|
a |
|
b/code/scan.lua |
|
|
1 |
function scan_old(img, net, windowWidth, windowHeight, N) |
|
|
2 |
img = img:double() |
|
|
3 |
|
|
|
4 |
local imageHeight = img:size(2) |
|
|
5 |
local imageWidth = img:size(3) |
|
|
6 |
|
|
|
7 |
local map = torch.FloatTensor(imageHeight, imageWidth):fill(0) |
|
|
8 |
local window = torch.Tensor(windowHeight, windowWidth) |
|
|
9 |
if cuda then |
|
|
10 |
window = window:cuda() |
|
|
11 |
end |
|
|
12 |
numWinRows = math.ceil((imageHeight-windowHeight+1)/N) |
|
|
13 |
for i=1,numWinRows do |
|
|
14 |
window = torch.DoubleTensor(numWinRows, 3, windowHeight, windowWidth) |
|
|
15 |
for j=1,numWinRows do |
|
|
16 |
window[{{j}, {}, {}, {}}] = image.crop(img, N*(j-1), N*(i-1), N*(j-1)+windowWidth, N*(i-1)+windowHeight) |
|
|
17 |
end |
|
|
18 |
--normalize |
|
|
19 |
mean = {} |
|
|
20 |
stdv = {} |
|
|
21 |
for i=1,3 do |
|
|
22 |
mean[i] = window[{{}, {i}, {}, {} }]:mean() |
|
|
23 |
window[{{}, {i}, {}, {} }]:add(-mean[i]) |
|
|
24 |
|
|
|
25 |
stdv[i] = window[{{}, {i}, {}, {} }]:std() |
|
|
26 |
window[{{}, {i}, {}, {} }]:div(stdv[i]) |
|
|
27 |
end |
|
|
28 |
if cuda then |
|
|
29 |
window = window:cuda() |
|
|
30 |
end |
|
|
31 |
local out = net:forward(window) |
|
|
32 |
for j=1,numWinRows do |
|
|
33 |
r1 = (i-1)*N+1+(windowHeight-1)/2 |
|
|
34 |
r2 = i*N+(windowHeight-1)/2 |
|
|
35 |
c1 = (j-1)*N+1+(windowWidth-1)/2 |
|
|
36 |
c2 = j*N+(windowWidth-1)/2 |
|
|
37 |
map[{{r1,r2},{c1,c2}}] = math.exp(out[j][1]) |
|
|
38 |
print(i,j,out[j][1]) |
|
|
39 |
end |
|
|
40 |
end |
|
|
41 |
return map |
|
|
42 |
end |
|
|
43 |
|
|
|
44 |
function scan(img, net) |
|
|
45 |
dofile("padarray.lua") |
|
|
46 |
pady = 50 |
|
|
47 |
padx = 50 |
|
|
48 |
img = padarray(img,{0,pady,padx},'mirror') |
|
|
49 |
|
|
|
50 |
--normalize |
|
|
51 |
mean = {} |
|
|
52 |
stdv = {} |
|
|
53 |
for i=1,3 do |
|
|
54 |
mean[i] = img[{{i}, {}, {} }]:mean() |
|
|
55 |
img[{{i}, {}, {} }]:add(-mean[i]) |
|
|
56 |
|
|
|
57 |
stdv[i] = img[{{i}, {}, {} }]:std() |
|
|
58 |
img[{{i}, {}, {} }]:div(stdv[i]) |
|
|
59 |
end |
|
|
60 |
local out = net:forward(img) |
|
|
61 |
|
|
|
62 |
map = torch.exp(out[{{1},{},{}}]) |
|
|
63 |
map = torch.squeeze(map) |
|
|
64 |
|
|
|
65 |
--pad with zeros to match the size to the input size |
|
|
66 |
pady = (img:size(2) - out:size(2))/2 |
|
|
67 |
padx = (img:size(3) - out:size(3))/2 |
|
|
68 |
--map = padarray(map,{pady, padx}, 'zero') |
|
|
69 |
|
|
|
70 |
return map |
|
|
71 |
end |