Diff of /code/gen_dataset.lua [000000] .. [b758a2]

Switch to unified view

a b/code/gen_dataset.lua
1
require 'torch';
2
require 'image';
3
4
folder = '/home/andrew/mitosis-detection'
5
6
train_folder = paths.concat(folder,'mitosis-train')
7
test_folder = paths.concat(folder,'mitosis-test')
8
trainset = paths.concat(folder,'mitosis-train.t7')
9
testset = paths.concat(folder,'mitosis-test.t7')
10
11
function gen_dataset(data_folder, outfile)
12
    true_folder = paths.concat(data_folder,'true')
13
    false_folder = paths.concat(data_folder,'false')
14
15
    true_files = {}
16
    false_files = {}
17
18
    for file in paths.files(true_folder,'.png') do
19
        table.insert(true_files, paths.concat(true_folder,file))
20
    end
21
22
    for file in paths.files(false_folder,'.png') do
23
        table.insert(false_files, paths.concat(false_folder,file))
24
    end
25
26
    data = torch.ByteTensor(#true_files+#false_files,3,101,101)
27
    label = torch.ByteTensor(#true_files+#false_files)
28
29
    for i,file in ipairs(true_files) do
30
        print(i)
31
        data[{{i},{},{},{}}] = image.load(file,3,'byte')
32
        label[i] = 1
33
    end
34
35
    for i,file in ipairs(false_files) do
36
        print(i + #true_files)
37
        data[{{i + #true_files},{},{},{}}] = image.load(file,3,'byte')
38
        label[i + #true_files] = 1
39
    end
40
41
    dataset = {}
42
    dataset.data = data
43
    dataset.label = label
44
45
    torch.save(outfile, dataset)
46
end
47
48
gen_dataset(train_folder,trainset)
49
gen_dataset(test_folder,testset)