--- a +++ b/code/gen_dataset.lua @@ -0,0 +1,49 @@ +require 'torch'; +require 'image'; + +folder = '/home/andrew/mitosis-detection' + +train_folder = paths.concat(folder,'mitosis-train') +test_folder = paths.concat(folder,'mitosis-test') +trainset = paths.concat(folder,'mitosis-train.t7') +testset = paths.concat(folder,'mitosis-test.t7') + +function gen_dataset(data_folder, outfile) + true_folder = paths.concat(data_folder,'true') + false_folder = paths.concat(data_folder,'false') + + true_files = {} + false_files = {} + + for file in paths.files(true_folder,'.png') do + table.insert(true_files, paths.concat(true_folder,file)) + end + + for file in paths.files(false_folder,'.png') do + table.insert(false_files, paths.concat(false_folder,file)) + end + + data = torch.ByteTensor(#true_files+#false_files,3,101,101) + label = torch.ByteTensor(#true_files+#false_files) + + for i,file in ipairs(true_files) do + print(i) + data[{{i},{},{},{}}] = image.load(file,3,'byte') + label[i] = 1 + end + + for i,file in ipairs(false_files) do + print(i + #true_files) + data[{{i + #true_files},{},{},{}}] = image.load(file,3,'byte') + label[i + #true_files] = 1 + end + + dataset = {} + dataset.data = data + dataset.label = label + + torch.save(outfile, dataset) +end + +gen_dataset(train_folder,trainset) +gen_dataset(test_folder,testset)