[69f1e5]: / code / train_student.py

Download this file

188 lines (140 with data), 7.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import pandas as pd
from mil_data_generator import *
from mil_models_pytorch import*
from mil_trainer_torch import *
from sklearn.utils.class_weight import compute_class_weight
import torch
from torchvision import transforms
import argparse
np.random.seed(42)
random.seed(42)
torch.manual_seed(42)
def main(args):
# INPUTS #
dir_images = '../data/SICAP_MIL/patches/'
dir_data_frame = '../data/SICAP_MIL/dataframes/gt_global_slides.xlsx'
dir_data_frame_test = '../data/SICAP_MIL/dataframes/gt_test_patches.xlsx'
dir_experiment = '../data/results/' + args.experiment_name + '/'
classes = ['G3', 'G4', 'G5']
proportions = ['pG3', 'pG4', 'pG5']
input_shape = (3, 224, 224)
images_on_ram = True
data_augmentation = True
pMIL = False
aggregation = 'max' # 'max', 'mean', 'attentionMIL', 'mcAttentionMIL'
mode = 'instance' # 'embedding', 'instance', 'mixed'
include_background = True
iterations = 3
df = pd.read_excel(dir_data_frame)
metrics = []
for ii_iteration in np.arange(0, iterations):
# Set data generators
dataset_train = MILDataset(dir_images, df[df['Partition'] == 'train'], classes, bag_id='slide_name',
input_shape=input_shape, data_augmentation=False, images_on_ram=images_on_ram,
pMIL=pMIL, proportions=proportions)
data_generator_train = MILDataGenerator(dataset_train, batch_size=1, shuffle=True, max_instances=512)
dataset_test = MILDataset(dir_images, df[df['Partition'] == 'test'], classes, bag_id='slide_name',
input_shape=input_shape, data_augmentation=False, images_on_ram=images_on_ram,
pMIL=pMIL, proportions=proportions, dataframe_instances=pd.read_excel(dir_data_frame_test))
data_generator_test = MILDataGenerator(dataset_test, batch_size=1, shuffle=False, max_instances=512)
# Test at instance level
X_test = data_generator_test.dataset.X[data_generator_test.dataset.y_instances[:, 0] != -1, :, :, :]
Y_test = data_generator_test.dataset.y_instances[data_generator_test.dataset.y_instances[:, 0] != -1, :]
# Load network
network = torch.load(dir_experiment + str(ii_iteration) + '_network_weights_best.pth')
# Pseudolabels on training set
labels = []
yhat_one_hot = []
Yglobal = data_generator_train.dataset.Yglobal
X = data_generator_train.dataset.X
for i in np.arange(0, X.shape[0]):
print(str(i + 1) + '/' + str(X.shape[0]), end='\r')
# Tensorize input
x = torch.tensor(X[i, :, :, :]).cuda().float()
x = x.unsqueeze(0)
features = network.bb(x)
yhat = torch.softmax(network.classifier(torch.squeeze(features)), 0)
yhat = yhat.detach().cpu().numpy()
yhat_one_hot.append(yhat)
if np.max(Yglobal[i, 1:]) == 0:
labels.append(0)
else:
if np.argmax(yhat) > 0:
if Yglobal[i, np.argmax(yhat)] == 1 and yhat[np.argmax(yhat)] > 0.5:
labels.append(np.argmax(yhat))
else:
labels.append(10)
else:
labels.append(10)
labels = np.array(labels)
yhat_one_hot = np.array(yhat_one_hot)
X = X[labels != 10, :, :, :]
Y = labels[labels != 10]
images_id = np.array(dataset_train.images)[labels != 10]
class_weights = compute_class_weight('balanced', [0, 1, 2, 3], Y)
# Set student network architecture
lr = 1e-2
network = MILArchitecture(classes, mode=mode, aggregation=aggregation, backbone='vgg19',
include_background=include_background).cuda()
opt = torch.optim.SGD(network.parameters(), lr=lr)
tranf = torch.nn.Sequential(transforms.RandomHorizontalFlip(),
transforms.RandomRotation(degrees=(-45, 45)),
transforms.GaussianBlur(3, sigma=(0.1, 2.0)),
transforms.ColorJitter(brightness=.5, hue=.3)).cuda()
training_data = CustomImageDataset(X, Y, transform=False)
train_dataloader = CustomGenerator(training_data, bs=32, shuffle=True)
def test_instances(X, Y, network, dir_out, i_iteration):
network.eval()
Yhat = []
for i in np.arange(0, X.shape[0]):
print(str(i + 1) + '/' + str(X.shape[0]), end='\r')
# Tensorize input
x = torch.tensor(X[i, :, :, :]).cuda().float()
x = x.unsqueeze(0)
features = network.bb(x)
yhat = torch.softmax(network.classifier(torch.squeeze(features)), 0)
yhat = torch.argmax(yhat).detach().cpu().numpy()
Yhat.append(yhat)
Yhat = np.array(Yhat)
Y = np.argmax(Y, 1)
cr = classification_report(Y, Yhat, target_names=['NC'] + classes, digits=4)
cm = confusion_matrix(Y, Yhat)
k2 = cohen_kappa_score(Y, Yhat, weights='quadratic')
f = open(dir_out + str(i_iteration) + '_report_student.txt', 'w')
f.write('Title\n\nClassification Report\n\n{}\n\nConfusion Matrix\n\n{}\n\nKappa\n\n{}\n'.format(cr, cm, k2))
f.close()
return k2
# STUDENT TRAINING
epochs = 60
dropout_rate = 0.2
for i_epoch in np.arange(0, epochs):
l_epoch = 0
if (i_epoch + 1) % 25 == 0:
for g in opt.param_groups:
g['lr'] = g['lr'] / 2
for i_iteration, (X, Y) in enumerate(train_dataloader):
# Set model to training mode and clear gradients
network.train()
opt.zero_grad()
X = X.cuda().float()
X = tranf(X)
logits = network.classifier(torch.nn.Dropout(dropout_rate)(torch.squeeze(network.bb(X))))
L = torch.nn.CrossEntropyLoss(weight=torch.tensor(class_weights).cuda().float())(logits, Y.type(torch.LongTensor).cuda())
L.backward()
opt.step()
L_iteration = L.detach().cpu().numpy()
l_epoch += L_iteration
info = "[INFO] Epoch {}/{} -- Step {}/{}: Lce={:.6f}".format(
i_epoch + 1, epochs, i_iteration + 1, len(train_dataloader), L_iteration)
print(info, end='\r')
l_epoch = l_epoch/len(train_dataloader)
k2 = test_instances(X_test, Y_test, network, dir_experiment, ii_iteration)
info = "[INFO] Epoch {}/{} -- Step {}/{}: Lce={:.6f}; k2={:.6f}".format(
i_epoch+1, epochs, i_iteration, len(train_dataloader), l_epoch, k2)
print(info, end='\n')
torch.save(network, dir_experiment + str(ii_iteration) + '_student_network_weights.pth')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--experiment_name", default="test_test_test", type=str)
args = parser.parse_args()
main(args)