[69f1e5]: / code / produce_visualizations.py

Download this file

136 lines (110 with data), 5.7 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import pandas as pd
from mil_data_generator import *
from mil_models_pytorch import*
from mil_trainer_torch import *
from sklearn.utils.class_weight import compute_class_weight
import torch
from torchvision import transforms
from PIL import Image
import argparse
np.random.seed(42)
random.seed(42)
torch.manual_seed(42)
def main(args):
def image_normalization(x, input_shape, channel_first=True):
# image resize
x = cv2.resize(x, (input_shape[1], input_shape[2]))
# intensity normalization
x = x / 255.0
# channel first
if channel_first:
x = np.transpose(x, (2, 0, 1))
# numeric type
x.astype('float32')
return x
# INPUTS #
dir_slides = '../data/SICAP_MIL/slides/'
dir_data_frame = '../data/SICAP_MIL/dataframes/gt_global_slides.xlsx'
dir_experiment = '../data/results/' + args.experiment_name + '/'
classes = ['G3', 'G4', 'G5']
input_shape = (3, 224, 224)
images_on_ram = True
patch_size = 512
overlap = 0.25
save_annotations = args.save_annotations
# Load df and take only test biopsies
df = pd.read_excel(dir_data_frame)
df = df[df['Partition'] == 'test']
slices_test = list(df['slide_name'])
# slices in folder
slices = os.listdir(dir_slides)
# Load network -- we use the first iteration model as example
network = torch.load(dir_experiment + str(0) + '_network_weights_best.pth').cuda()
if not os.path.isdir(dir_experiment + '/visualizations/'):
os.mkdir(dir_experiment + '/visualizations/')
if save_annotations:
if not os.path.isdir(dir_experiment + '/visualizations_gt/'):
os.mkdir(dir_experiment + '/visualizations_gt/')
c = 0
for iSlide in slices:
c += 1
print(str(c) + '/' + str(len(slices)))
if iSlide.split('_')[0] in slices_test:
wsi = Image.open(os.path.join(dir_slides, iSlide))
wsi = np.asarray(wsi)
if save_annotations:
if os.path.isfile(os.path.join('../data/SICAP_MIL/annotation_masks/', iSlide)):
wsi_gt = Image.open(os.path.join('../data/SICAP_MIL/annotation_masks/', iSlide))
wsi_gt = np.asarray(wsi_gt)
tissue = cv2.cvtColor(wsi, cv2.COLOR_BGR2GRAY)
ret, thresh1 = cv2.threshold(tissue, 120, 255, cv2.THRESH_BINARY +
cv2.THRESH_OTSU)
tissue = tissue < (ret)
tissue = cv2.morphologyEx(np.uint8(tissue*255), cv2.MORPH_CLOSE, np.ones((25, 25), np.uint8)) / 255
if not save_annotations:
output = np.zeros((wsi.shape[0], wsi.shape[1], 4))
npatches = np.zeros((wsi.shape[0], wsi.shape[1]))
x0 = 0
while (x0 + patch_size) <= wsi.shape[1]:
y0 = 0
while (y0 + patch_size) <= wsi.shape[0]:
# If there is tissue, get predictions
if np.mean(tissue[y0:y0+patch_size, x0:x0+patch_size]) > 0.2:
# Take patch
patch = wsi[y0:y0+patch_size, x0:x0+patch_size, :]
# Pre-process patch
x = image_normalization(patch.copy(), input_shape)
x = torch.tensor(x).cuda().float().unsqueeze(0)
# Forward
features = network.bb(x)
yhat = torch.softmax(network.classifier(torch.squeeze(features)), 0)
yhat = yhat.detach().cpu().numpy()
# Update visualization heatmap
output[y0:y0+patch_size, x0:x0+patch_size, :] += yhat
npatches[y0:y0+patch_size, x0:x0+patch_size] += 1
y0 = int(y0 + patch_size*overlap)
x0 = int(x0 + patch_size*overlap)
a = output / (np.expand_dims(npatches, -1) + 1e-6)
mask = np.argmax(a, axis=-1)
mask = mask * tissue
colors = np.float64(np.concatenate([np.expand_dims(mask == 3, -1),
np.expand_dims(mask == 1, -1),
np.expand_dims(mask == 2, -1)], axis=-1))
overlay = wsi + 0.3 * (colors * 254)
overlay = np.clip(overlay, 0, 254) / 255
im = Image.fromarray((overlay * 255).astype(np.uint8))
im.save(dir_experiment + '/visualizations/' + iSlide)
if save_annotations and os.path.isfile(os.path.join('../data/SICAP_MIL/annotation_masks/', iSlide)):
colors = np.float64(np.concatenate([np.expand_dims(wsi_gt >= 170, -1),
np.expand_dims((wsi_gt >= 25) * (wsi_gt <= 80) , -1),
np.expand_dims((wsi_gt >= 80) * (wsi_gt <= 170), -1)], axis=-1))
overlay = wsi + 0.3 * (colors * 254)
overlay = np.clip(overlay, 0, 254) / 255
im = Image.fromarray((overlay * 255).astype(np.uint8))
im.save(dir_experiment + '/visualizations_gt/' + iSlide)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--experiment_name", default="test_test_test", type=str)
parser.add_argument("--save_annotations", default=False, type=bool)
args = parser.parse_args()
main(args)