[118be8]: / code / mil_trainer_torch.py

Download this file

477 lines (386 with data), 20.2 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import sklearn
import torch
import numpy as np
import datetime
import cv2
import sklearn.metrics
import os
from timeit import default_timer as timer
import json
from matplotlib import pyplot as plt
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import roc_auc_score
from sklearn.metrics import cohen_kappa_score, accuracy_score, f1_score
from losses import *
from sklearn.cluster import KMeans
import torch.nn.functional as F
import random
# import warnings filter
from warnings import simplefilter
# ignore all future warnings
simplefilter(action='ignore', category=FutureWarning)
class MILTrainer():
def __init__(self, dir_out, network, lr=1*1e-4, pMIL=False, margin=0, t_ic=10,
t_pc=10, alpha_ic=1, alpha_pc=1, alpha_ce=1, id='', early_stopping=False,
scheduler=False, virtual_batch_size=1, criterion='auc', alpha_H=0.01):
self.dir_results = dir_out
if not os.path.isdir(self.dir_results):
os.mkdir(self.dir_results)
# Other
self.best_auc = 0.
self.init_time = 0
self.lr = lr
self.L_epoch = 0
self.L_lc = []
self.Lce_lc_val = []
self.macro_auc_lc_val = []
self.macro_auc_lc_train = []
self.i_epoch = 0
self.epochs = 0
self.i_iteration = 0
self.iterations = 0
self.network = network
self.test_generator = []
self.train_generator = []
self.preds_train = []
self.refs_train = []
self.pMIL = pMIL
self.alpha_ce = alpha_ce
self.best_criterion = 0
self.best_epoch = 0
self.metrics = {}
self.id = id
self.early_stopping = early_stopping
self.scheduler = scheduler
self.virtual_batch_size = virtual_batch_size
self.constrain_cumpliment_lc = []
self.constrain_proportion_lc = []
self.criterion = criterion
self.alpha_H = alpha_H
self.H_iteration = 0.
self.H_epoch = 0.
# Set optimizers
self.params = list(self.network.parameters())
if self.pMIL:
self.Lp_iteration = 0
self.Lp_epoch = 0
self.Lp_lc = []
self.m = margin
self.t_ic = t_ic
self.t_pc = t_pc
self.alpha_ic = alpha_ic
self.alpha_pc = alpha_pc
self.constrain_cumpliment = 0.
self.constraint_proportion = 0.
self.opt = torch.optim.SGD(self.params, lr=self.lr)
#self.opt = torch.optim.Adam(self.params, lr=self.lr)
# Set losses
if network.mode == 'embedding' or network.mode == 'mixed':
self.L = torch.nn.BCEWithLogitsLoss().cuda()
elif network.mode == 'instance':
self.L = torch.nn.BCELoss().cuda()
def train(self, train_generator, val_generator, test_generator, epochs):
self.epochs = epochs
self.iterations = len(train_generator)
self.train_generator = train_generator
self.val_generator = val_generator
self.test_generator = test_generator
self.preds_train = []
self.refs_train = []
# Move network to gpu
self.network.cuda()
self.init_time = timer()
for i_epoch in range(epochs):
self.i_epoch = i_epoch
# init epoch losses
self.L_epoch = 0
self.Lpc_iteration = 0
self.Lic_iteration = 0
self.Lic_epoch = 0
self.Lpc_epoch = 0
self.H_iteration = 0.
self.H_epoch = 0.
self.constrain_cumpliment_iteration = 0.
self.constrain_cumpliment_epoch = 0.
self.constrain_proportion_epoch = 0.
self.constrain_ic_proportion_epoch = 0.
self.j = 0.
self.jj = 0.
n = 0
nn = 0
if self.scheduler:
if (self.i_epoch + 1) % 50 == 0:
for g in self.opt.param_groups:
g['lr'] = self.lr / 2
# Loop over training dataset
print('[Training]: at bag level...')
for self.i_iteration, (X, Y, O, X_augm) in enumerate(self.train_generator):
X = torch.tensor(X).cuda().float()
if X_augm is None:
X_augm = X
else:
X_augm = torch.tensor(X_augm).cuda().float()
Y = torch.tensor(Y).cuda().float()
# Set model to training mode and clear gradients
self.network.train()
# Forward network
Yhat, yhat, features = self.network(X_augm)
if self.network.mode == 'instance':
Yhat = torch.clip(Yhat, min=0.01, max=0.98)
# Estimate losses
Lce = self.L(Yhat, torch.squeeze(Y))
# Update overall losses
L = Lce * self.alpha_ce
if self.alpha_H > 0:
H = torch.mean(-torch.sum(yhat * torch.log(yhat + 1e-12), dim=(-1)))
self.H_iteration = H
L += - self.alpha_H * self.H_iteration
if self.pMIL:
O_ic = np.array(O[0]).astype('float32')
O_pc = np.array(O[1]).astype('float32')
if self.network.include_background:
yhat = yhat[:, 1:]
if self.alpha_ic > 0:
if np.max(np.abs(O_ic)) == 1:
# Move O matrix to tensor
Ot = torch.tensor(O_ic).cuda().float()
# Obtain proportion vector
P = torch.mean(yhat, 0)
# Obtain z
z = torch.matmul(Ot, P.unsqueeze(-1))
self.Lic_iteration = log_barrier(z, t=self.t_ic).squeeze()
# Update overall losses
L += self.alpha_ic * self.Lp_iteration
n += 1
self.constrain_ic_proportion_epoch += np.sum(z.cpu().detach().numpy())
self.jj += 1
else:
self.Lic_iteration = torch.tensor(0).cuda()
if self.alpha_pc > 0:
if np.max(np.abs(O_pc)) == 1:
# Move O matrix to tensor
Ot2 = torch.tensor(O_pc).cuda().float()
# Obtain proportion vector
P = torch.mean(yhat, 0)
# Obtain z
z = torch.matmul(Ot2, P.unsqueeze(-1)) + self.m
self.Lpc_iteration = log_barrier(z, t=self.t_pc).squeeze()
# Update overall losses
L += self.alpha_pc * self.Lpc_iteration
nn += 1
if (z-self.m) < 0:
self.constrain_cumpliment_iteration = 1
else:
self.constrain_cumpliment_iteration = 0
self.constrain_proportion_epoch += z.cpu().detach().numpy() - self.m
self.j += 1
else:
self.Lpc_iteration = torch.tensor(0).cuda()
self.constrain_cumpliment_iteration = 0
# Backward gradients
L = L / self.virtual_batch_size
L.backward()
# Update weights and clear gradients
if ((self.i_epoch + 1) % self.virtual_batch_size) == 0:
self.opt.step()
self.opt.zero_grad()
######################################
## --- Iteration/Epoch end
# Save predictions
self.preds_train.append(Yhat.detach().cpu().numpy())
self.refs_train.append(Y.detach().cpu().numpy())
# Display losses per iteration
self.display_losses(self.i_epoch + 1, self.epochs, self.i_iteration + 1, self.iterations,
Lce.cpu().detach().numpy(),
end_line='\r')
# Update epoch's losses
self.L_epoch += Lce.cpu().detach().numpy() / len(self.train_generator)
if self.pMIL and np.max(np.abs(O_ic)) == 1 and self.alpha_ic > 0:
self.Lic_epoch += self.Lic_iteration.cpu().detach().numpy()
if self.pMIL and np.max(np.abs(O_pc)) == 1 and self.alpha_pc > 0:
self.Lpc_epoch += self.Lpc_iteration.cpu().detach().numpy()
self.constrain_cumpliment_epoch += self.constrain_cumpliment_iteration
if self.alpha_H > 0.:
self.H_epoch += self.H_iteration.cpu().detach().numpy() / len(self.train_generator)
# Epoch-end processes
if self.pMIL and self.alpha_ic > 0:
self.Lic_epoch = self.Lic_epoch / n
self.constrain_ic_proportion_epoch = np.squeeze(self.constrain_ic_proportion_epoch) / self.jj
if self.pMIL and self.alpha_pc > 0:
self.Lpc_epoch = self.Lpc_epoch / nn
self.constrain_cumpliment_epoch = self.constrain_cumpliment_epoch / nn
self.constrain_proportion_epoch = np.squeeze(self.constrain_proportion_epoch) / self.j
self.constrain_cumpliment_lc.append(self.constrain_cumpliment_epoch)
self.constrain_proportion_lc.append(self.constrain_proportion_epoch)
self.on_epoch_end()
if self.early_stopping:
if self.i_epoch + 1 == (self.best_epoch + 20):
break
def on_epoch_end(self):
# Obtain epoch-level metrics
macro_auc = roc_auc_score(np.squeeze(np.array(self.refs_train)), np.array(self.preds_train), multi_class='ovr')
self.macro_auc_lc_train.append(macro_auc)
# Display losses
self.display_losses(self.i_epoch + 1, self.epochs, self.iterations, self.iterations, self.L_epoch, macro_auc,
end_line='\n')
# Update learning curves
self.L_lc.append(self.L_epoch)
# Obtain results on validation set
Lce_val, macro_auc_val = self.test_bag_level_classification(self.val_generator)
# Save loss value into learning curve
self.Lce_lc_val.append(Lce_val)
self.macro_auc_lc_val.append(macro_auc_val)
metrics = {'epoch': self.i_epoch + 1, 'AUCtrain': np.round(self.macro_auc_lc_train[-1], 4),
'AUCval': np.round(self.macro_auc_lc_val[-1], 4)}
with open(self.dir_results + self.id + 'metrics.json', 'w') as fp:
json.dump(metrics, fp)
print(metrics)
if (self.i_epoch + 1) > 10:
if self.criterion == 'auc':
if self.best_criterion < self.macro_auc_lc_val[-1]:
self.best_criterion = self.macro_auc_lc_val[-1]
self.best_epoch = (self.i_epoch + 1)
torch.save(self.network, self.dir_results + self.id + 'network_weights_best.pth')
elif self.criterion == 'z':
if self.best_criterion < (-self.constrain_proportion_epoch):
self.best_criterion = -self.constrain_proportion_epoch
self.best_epoch = (self.i_epoch + 1)
torch.save(self.network, self.dir_results + self.id + 'network_weights_best.pth')
# Each xx epochs, test models and plot learning curves
if (self.i_epoch + 1) % 5 == 0:
# Save weights
torch.save(self.network, self.dir_results + self.id + 'network_weights.pth')
# Plot learning curve
self.plot_learning_curves()
# Test at instance level
X = self.test_generator.dataset.X[self.test_generator.dataset.y_instances[:, 0] != -1, :, :, :]
Y = self.test_generator.dataset.y_instances[self.test_generator.dataset.y_instances[:, 0] != -1, :]
acc, f1, k2 = self.test_instance_level_classification(X, Y, self.test_generator.dataset.classes)
if (self.epochs == (self.i_epoch + 1)) or (self.early_stopping and (self.i_epoch + 1 == (self.best_epoch + 20))):
print('-' * 20)
print('-' * 20)
self.network = torch.load(self.dir_results + self.id + 'network_weights_best.pth')
# Obtain results on validation set
Lce_val, macro_auc_val = self.test_bag_level_classification(self.val_generator)
# Obtain results on validation set
Lce_test, macro_auc_test = self.test_bag_level_classification(self.test_generator)
# Test at instance level
X = self.test_generator.dataset.X[self.test_generator.dataset.y_instances[:, 0] != -1, :, :, :]
Y = self.test_generator.dataset.y_instances[self.test_generator.dataset.y_instances[:, 0] != -1, :]
acc, f1, k2 = self.test_instance_level_classification(X, Y, self.test_generator.dataset.classes)
metrics = {'epoch': self.best_epoch, 'AUCtest': np.round(macro_auc_test, 4),
'AUCval': np.round(macro_auc_val, 4), 'acc': np.round(acc, 4),
'f1': np.round(f1, 4), 'k2': np.round(k2, 4),
}
if self.alpha_pc:
metrics['constrain_cumpliment'] = np.round(self.constrain_cumpliment_lc[self.best_epoch-1], 4)
metrics['constrain_proportion'] = np.round(self.constrain_proportion_lc[self.best_epoch-1], 4)
with open(self.dir_results + self.id + 'best_metrics.json', 'w') as fp:
json.dump(metrics, fp)
print(metrics)
self.metrics = metrics
print('-' * 20)
print('-' * 20)
def plot_learning_curves(self):
def plot_subplot(axes, x, y, y_axis):
axes.grid()
for i in range(x.shape[0]):
axes.plot(x[i, :], y[i, :], 'o-')
axes.set_ylabel(y_axis)
fig, axes = plt.subplots(2, 1, figsize=(20, 15))
plot_subplot(axes[0], np.tile(np.arange(self.i_epoch + 1), (2, 1)) + 1, np.array([self.L_lc, self.Lce_lc_val]), "Lce")
plot_subplot(axes[1], np.tile(np.arange(self.i_epoch + 1), (2, 1)) + 1, np.array([self.macro_auc_lc_train, self.macro_auc_lc_val]), "mAUC")
plt.savefig(self.dir_results + self.id + 'learning_curve.png')
def display_losses(self, i_epoch, epochs, iteration, total_iterations, Lce, macro_auc=0, end_line=''):
info = "[INFO] Epoch {}/{} -- Step {}/{}: Lce={:.4f} ; AUC={:.4f}".format(
i_epoch, epochs, iteration, total_iterations, Lce, macro_auc)
if self.alpha_H > 0:
if end_line == '\n':
info += ' ; H=' + str(np.round(self.H_epoch, 4))
else:
info += ' ; H=' + str(np.round(self.H_iteration.cpu().detach().numpy(), 4))
if self.pMIL and end_line == '\n':
if self.alpha_pc > 0:
info += ' ; IC=' + str(np.round(self.Lic_epoch, 4))
info += '{' + str(np.round(self.constrain_ic_proportion_epoch, 4)) + '}'
if self.alpha_ic > 0:
info += ' ; PC=' + str(np.round(self.Lpc_epoch, 4))
info += '{' + str(np.round(self.constrain_cumpliment_epoch, 4)) + '}'
info += '{' + str(np.round(self.constrain_proportion_epoch, 4)) + '} '
if self.pMIL and end_line == '\r':
if self.alpha_pc > 0:
info += ' ; IC=' + str(np.round(self.Lic_iteration.cpu().detach().numpy(), 4))
if self.alpha_ic > 0:
info += ' ; PC=' + str(np.round(self.Lpc_iteration.cpu().detach().numpy(), 4))
info += '{' + str(np.round(self.constrain_cumpliment_iteration, 4)) + '} '
# Print losses
et = str(datetime.timedelta(seconds=timer() - self.init_time))
print(info + ',ET=' + et, end=end_line)
def test_instance_level_classification(self, X, Y, classes):
classes = ['NC'] + classes
self.network.eval()
print(['INFO: Testing at instance level...'])
Yhat = []
for iInstance in np.arange(0, X.shape[0]):
print(str(iInstance+1) + '/' + str(X.shape[0]), end='\r')
# Tensorize input
x = torch.tensor(X[iInstance, :, :, :]).cuda().float()
x = x.unsqueeze(0)
if self.network.aggregation == 'mcAttentionMIL':
yhat = self.network.milAggregation(torch.squeeze(self.network.bb(x)).unsqueeze(0))[1]
yhat = torch.argmax(yhat).detach().cpu().numpy()
else:
# Make prediction
if not self.network.prototypical:
yhat = torch.softmax(self.network.classifier(torch.squeeze(self.network.bb(x))), 0)
else:
yhat = torch.softmax(- torch.cdist(torch.squeeze(self.network.bb(x)).unsqueeze(0), self.network.C, p=2.0), 1)
yhat = torch.argmax(yhat).detach().cpu().numpy()
Yhat.append(yhat)
Yhat = np.array(Yhat)
Y = np.argmax(Y, 1)
cr = classification_report(Y, Yhat, target_names=classes, digits=4)
acc = accuracy_score(Y, Yhat)
f1 = f1_score(Y, Yhat, average='macro')
cm = confusion_matrix(Y, Yhat)
k2 = cohen_kappa_score(Y, Yhat, weights='quadratic')
print('Instance Level kappa: ' + str(np.round(k2, 4)), end='\n')
f = open(self.dir_results + self.id + 'report.txt', 'w')
f.write('Title\n\nClassification Report\n\n{}\n\nConfusion Matrix\n\n{}\n\nKappa\n\n{}\n'.format(cr, cm, k2))
f.close()
return acc, f1, k2
def test_bag_level_classification(self, test_generator, binary=False):
self.network.eval()
print('[VALIDATION]: at bag level...')
# Loop over training dataset
Y_all = []
Yhat_all = []
Lce_e = 0
for self.i_iteration, (X, Y, O, _) in enumerate(test_generator):
X = torch.tensor(X).cuda().float()
Y = torch.tensor(Y).cuda().float()
# Set model to training mode and clear gradients
# Forward network
Yhat, _, _ = self.network(X)
# Estimate losses
Lce = self.L(Yhat, torch.squeeze(Y))
Lce_e += Lce.cpu().detach().numpy() / len(test_generator)
Y_all.append(Y.detach().cpu().numpy())
Yhat_all.append(Yhat.detach().cpu().numpy())
# Display losses per iteration
self.display_losses(self.i_epoch + 1, self.epochs, self.i_iteration + 1, len(test_generator),
Lce.cpu().detach().numpy(),
end_line='\r')
# Obtain overall metrics
Yhat_all = np.array(Yhat_all)
Y_all = np.squeeze(np.array(Y_all))
if binary:
Yhat_all = np.max(Yhat_all, 1)
Y_all = np.max(Y_all, 1)
macro_auc = roc_auc_score(Y_all, Yhat_all, multi_class='ovr')
# Display losses per epoch
self.display_losses(self.i_epoch + 1, self.epochs, self.i_iteration + 1, len(test_generator),
Lce_e, macro_auc,
end_line='\n')
return Lce_e, macro_auc