//
// Hierarchical shrinkage prior on regression coeffs (linear regression)
//
// This implements the regularized horseshoe prior according to the simple
// parametrization presented in:
//
// Piironen, Vehtari (2017), Sparsity information and regularization in the
// horseshoe and other shrinkage priors, Electronic Journal of Statistics
functions {
#include /chunks/hs.fun
}
data {
// number of columns in model matrix
int P;
// number of unpenalized columns in model matrix
int U;
// number of observations
int N;
// design matrix
matrix[N, P] X;
// continuous response variable
vector[N] y;
// prior standard deviation for the unpenalised variables
real<lower=0> scale_u;
// whether the regularized horseshoe should be used
int<lower=0, upper=1> regularized;
// degrees of freedom for the half-t priors on lambda
real<lower=1> nu;
// scale for the half-t prior on tau
real<lower=0> global_scale;
// degrees of freedom for the half-t prior on tau
real<lower=1> global_df;
// slab scale for the regularized horseshoe
real<lower=0> slab_scale;
// slab degrees of freedom for the regularized horseshoe
real<lower=0> slab_df;
}
parameters {
// unpenalized regression parameters
vector[U] beta_u;
// residual standard deviation
real <lower=0> sigma;
// global shrinkage parameter
real<lower=0> tau;
// local shrinkage parameter
vector<lower=0>[P-U] lambda;
// auxiliary variables
vector[P-U] z;
real<lower=0> c2;
}
transformed parameters {
// penalized regression parameters
vector[P-U] beta_p;
if (regularized)
beta_p = reg_hs(z, lambda, tau, slab_scale^2 * c2);
else
beta_p = hs(z, lambda, tau);
}
model {
// regression coefficients
vector[P] beta = append_row(beta_u, beta_p);
// half t-priors for lambdas and tau
z ~ std_normal();
lambda ~ student_t(nu, 0, 1);
tau ~ student_t(global_df, 0, global_scale * sigma);
// inverse-gamma prior for c^2
c2 ~ inv_gamma(0.5 * slab_df, 0.5 * slab_df);
// unpenalized coefficients including intercept
beta_u ~ normal(0, scale_u);
// noninformative gamma priors on scale parameter are not advised
sigma ~ inv_gamma(1, 1);
// likelihood
y ~ normal_id_glm(X, 0, beta, sigma);
}