[ede2d4]: / inst / stan / hs.stan

Download this file

105 lines (74 with data), 2.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
//
// Hierarchical shrinkage prior on regression coeffs (linear regression)
//
// This implements the regularized horseshoe prior according to the simple
// parametrization presented in:
//
// Piironen, Vehtari (2017), Sparsity information and regularization in the
// horseshoe and other shrinkage priors, Electronic Journal of Statistics
functions {
#include /chunks/hs.fun
}
data {
// number of columns in model matrix
int P;
// number of unpenalized columns in model matrix
int U;
// number of observations
int N;
// design matrix
matrix[N, P] X;
// continuous response variable
vector[N] y;
// prior standard deviation for the unpenalised variables
real<lower=0> scale_u;
// whether the regularized horseshoe should be used
int<lower=0, upper=1> regularized;
// degrees of freedom for the half-t priors on lambda
real<lower=1> nu;
// scale for the half-t prior on tau
real<lower=0> global_scale;
// degrees of freedom for the half-t prior on tau
real<lower=1> global_df;
// slab scale for the regularized horseshoe
real<lower=0> slab_scale;
// slab degrees of freedom for the regularized horseshoe
real<lower=0> slab_df;
}
parameters {
// unpenalized regression parameters
vector[U] beta_u;
// residual standard deviation
real <lower=0> sigma;
// global shrinkage parameter
real<lower=0> tau;
// local shrinkage parameter
vector<lower=0>[P-U] lambda;
// auxiliary variables
vector[P-U] z;
real<lower=0> c2;
}
transformed parameters {
// penalized regression parameters
vector[P-U] beta_p;
if (regularized)
beta_p = reg_hs(z, lambda, tau, slab_scale^2 * c2);
else
beta_p = hs(z, lambda, tau);
}
model {
// regression coefficients
vector[P] beta = append_row(beta_u, beta_p);
// half t-priors for lambdas and tau
z ~ std_normal();
lambda ~ student_t(nu, 0, 1);
tau ~ student_t(global_df, 0, global_scale * sigma);
// inverse-gamma prior for c^2
c2 ~ inv_gamma(0.5 * slab_df, 0.5 * slab_df);
// unpenalized coefficients including intercept
beta_u ~ normal(0, scale_u);
// noninformative gamma priors on scale parameter are not advised
sigma ~ inv_gamma(1, 1);
// likelihood
y ~ normal_id_glm(X, 0, beta, sigma);
}