//
// Gaussian prior on regression coeffs (logistic regression)
//
data {
// number of unpenalized columns in model matrix
int U;
// number of observations
int N;
// prior standard deviation for the unpenalised variables
real <lower=0> scale_u;
// design matrix
matrix[N, U] X;
// binary response variable
array[N] int<lower=0, upper=1> y;
}
parameters {
// unpenalized regression parameters
vector[U] beta_u;
}
model {
// unpenalized coefficients including intercept
beta_u ~ normal(0, scale_u);
// likelihood
y ~ bernoulli_logit_glm(X, 0, beta_u);
}