Diff of /man/hsstan-package.Rd [000000] .. [ede2d4]

Switch to side-by-side view

--- a
+++ b/man/hsstan-package.Rd
@@ -0,0 +1,56 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/hsstan-package.R
+\docType{package}
+\name{hsstan-package}
+\alias{hsstan-package}
+\title{Hierarchical shrinkage Stan models for biomarker selection}
+\description{
+The \strong{hsstan} package provides linear and logistic regression models
+penalized with hierarchical shrinkage priors for selection of biomarkers.
+Models are fitted with Stan (Carpenter et al. (2017)), which allows to
+perform full Bayesian inference.
+}
+\details{
+The package implements the horseshoe and regularized horseshoe priors
+(Piironen and Vehtari (2017)), and the projection predictive selection
+approach to recover a sparse set of predictive biomarkers (Piironen,
+Paasiniemi and Vehtari (2020)).
+
+The approach is particularly suited to selection from high-dimensional
+panels of biomarkers, such as those that can be measured by MSMS or similar
+technologies (Colombo, Valo, McGurnaghan et al. (2019), Colombo, McGurnaghan,
+Blackbourn et al. (2020)).
+}
+\references{
+B. Carpenter et al. (2017),
+Stan: a probabilistic programming language,
+\emph{Journal of Statistical Software}, 76 (1).
+\doi{10.18637/jss.v076.i01}
+
+J. Piironen and A. Vehtari (2017),
+Sparsity information and regularization in the horseshoe and other shrinkage
+priors, \emph{Electronic Journal of Statistics}, 11 (2), 5018-5051.
+\doi{10.1214/17-EJS1337SI}
+
+J. Piironen, M. Paasiniemi and A. Vehtari (2020),
+Projective inference in high-dimensional problems: prediction and feature
+selection, \emph{Electronic Journal of Statistics}, 14 (1), 2155-2197.
+\doi{10.1214/20-EJS1711}
+
+M. Colombo, E. Valo, S.J. McGurnaghan et al. (2019),
+Biomarkers associated with progression of renal disease in type 1 diabetes,
+\emph{Diabetologia}, 62 (9), 1616-1627.
+\doi{10.1007/s00125-019-4915-0}
+
+M. Colombo, S.J. McGurnaghan, L.A.K. Blackbourn et al. (2020),
+Comparison of serum and urinary biomarker panels with albumin creatinin
+ratio in the prediction of renal function decline in type 1 diabetes,
+\emph{Diabetologia}, 63 (4), 788-798.
+\doi{10.1007/s00125-019-05081-8}
+
+M. Colombo, A. Asadi Shehni, I. Thoma et al. (2021),
+Quantitative levels of serum N-glycans in type 1 diabetes and their
+association with kidney disease,
+\emph{Glycobiology}, 31 (5), 613-623.
+\doi{10.1093/glycob/cwaa106}
+}