a b/inst/stan/base0_logit.stan
1
//
2
// Gaussian prior on regression coeffs (logistic regression)
3
//
4
5
data {
6
7
  // number of unpenalized columns in model matrix
8
  int U;
9
10
  // number of observations
11
  int N;
12
13
  // prior standard deviation for the unpenalised variables
14
  real <lower=0> scale_u;
15
16
  // design matrix
17
  matrix[N, U] X;
18
19
  // binary response variable
20
  array[N] int<lower=0, upper=1> y;
21
}
22
23
parameters {
24
25
  // unpenalized regression parameters
26
  vector[U] beta_u;
27
}
28
29
model {
30
31
  // unpenalized coefficients including intercept
32
  beta_u ~ normal(0, scale_u);
33
34
  // likelihood
35
  y ~ bernoulli_logit_glm(X, 0, beta_u);
36
}