|
a |
|
b/R/hsstan-package.R |
|
|
1 |
##============================================================================= |
|
|
2 |
## |
|
|
3 |
## Copyright (c) 2018-2019 Marco Colombo and Paul McKeigue |
|
|
4 |
## |
|
|
5 |
## This program is free software: you can redistribute it and/or modify |
|
|
6 |
## it under the terms of the GNU General Public License as published by |
|
|
7 |
## the Free Software Foundation, either version 3 of the License, or |
|
|
8 |
## (at your option) any later version. |
|
|
9 |
## |
|
|
10 |
## This program is distributed in the hope that it will be useful, |
|
|
11 |
## but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
|
12 |
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
13 |
## GNU General Public License for more details. |
|
|
14 |
## |
|
|
15 |
## You should have received a copy of the GNU General Public License |
|
|
16 |
## along with this program. If not, see <http://www.gnu.org/licenses/>. |
|
|
17 |
## |
|
|
18 |
##============================================================================= |
|
|
19 |
|
|
|
20 |
#' Hierarchical shrinkage Stan models for biomarker selection |
|
|
21 |
#' |
|
|
22 |
#' The **hsstan** package provides linear and logistic regression models |
|
|
23 |
#' penalized with hierarchical shrinkage priors for selection of biomarkers. |
|
|
24 |
#' Models are fitted with Stan (Carpenter et al. (2017)), which allows to |
|
|
25 |
#' perform full Bayesian inference. |
|
|
26 |
#' |
|
|
27 |
#' The package implements the horseshoe and regularized horseshoe priors |
|
|
28 |
#' (Piironen and Vehtari (2017)), and the projection predictive selection |
|
|
29 |
#' approach to recover a sparse set of predictive biomarkers (Piironen, |
|
|
30 |
#' Paasiniemi and Vehtari (2020)). |
|
|
31 |
#' |
|
|
32 |
#' The approach is particularly suited to selection from high-dimensional |
|
|
33 |
#' panels of biomarkers, such as those that can be measured by MSMS or similar |
|
|
34 |
#' technologies (Colombo, Valo, McGurnaghan et al. (2019), Colombo, McGurnaghan, |
|
|
35 |
#' Blackbourn et al. (2020)). |
|
|
36 |
#' |
|
|
37 |
#' @docType package |
|
|
38 |
#' @name hsstan-package |
|
|
39 |
#' @import Rcpp |
|
|
40 |
#' @import methods |
|
|
41 |
#' @useDynLib hsstan, .registration = TRUE |
|
|
42 |
#' |
|
|
43 |
#' @references |
|
|
44 |
#' B. Carpenter et al. (2017), |
|
|
45 |
#' Stan: a probabilistic programming language, |
|
|
46 |
#' _Journal of Statistical Software_, 76 (1). |
|
|
47 |
#' \doi{10.18637/jss.v076.i01} |
|
|
48 |
#' |
|
|
49 |
#' J. Piironen and A. Vehtari (2017), |
|
|
50 |
#' Sparsity information and regularization in the horseshoe and other shrinkage |
|
|
51 |
#' priors, _Electronic Journal of Statistics_, 11 (2), 5018-5051. |
|
|
52 |
#' \doi{10.1214/17-EJS1337SI} |
|
|
53 |
#' |
|
|
54 |
#' J. Piironen, M. Paasiniemi and A. Vehtari (2020), |
|
|
55 |
#' Projective inference in high-dimensional problems: prediction and feature |
|
|
56 |
#' selection, _Electronic Journal of Statistics_, 14 (1), 2155-2197. |
|
|
57 |
#' \doi{10.1214/20-EJS1711} |
|
|
58 |
#' |
|
|
59 |
#' M. Colombo, E. Valo, S.J. McGurnaghan et al. (2019), |
|
|
60 |
#' Biomarkers associated with progression of renal disease in type 1 diabetes, |
|
|
61 |
#' _Diabetologia_, 62 (9), 1616-1627. |
|
|
62 |
#' \doi{10.1007/s00125-019-4915-0} |
|
|
63 |
#' |
|
|
64 |
#' M. Colombo, S.J. McGurnaghan, L.A.K. Blackbourn et al. (2020), |
|
|
65 |
#' Comparison of serum and urinary biomarker panels with albumin creatinin |
|
|
66 |
#' ratio in the prediction of renal function decline in type 1 diabetes, |
|
|
67 |
#' _Diabetologia_, 63 (4), 788-798. |
|
|
68 |
#' \doi{10.1007/s00125-019-05081-8} |
|
|
69 |
#' |
|
|
70 |
#' M. Colombo, A. Asadi Shehni, I. Thoma et al. (2021), |
|
|
71 |
#' Quantitative levels of serum N-glycans in type 1 diabetes and their |
|
|
72 |
#' association with kidney disease, |
|
|
73 |
#' _Glycobiology_, 31 (5), 613-623. |
|
|
74 |
#' \doi{10.1093/glycob/cwaa106} |
|
|
75 |
NULL |
|
|
76 |
|
|
|
77 |
.onLoad <- function(libname, pkgname) { # nocov start |
|
|
78 |
modules <- paste0("stan_fit4", names(stanmodels), "_mod") |
|
|
79 |
for (m in modules) loadModule(m, what = TRUE) |
|
|
80 |
} # nocov end |
|
|
81 |
|
|
|
82 |
.onAttach <- function(libname, pkgname) { |
|
|
83 |
|
|
|
84 |
## number of cores used by default for sampling from the chains |
|
|
85 |
if (is.null(options()$mc.cores)) |
|
|
86 |
options(mc.cores=min(ceiling(parallel::detectCores() / 2), 4)) # nocov |
|
|
87 |
|
|
|
88 |
packageStartupMessage("hsstan ", utils::packageVersion("hsstan"), |
|
|
89 |
": using ", options("mc.cores"), |
|
|
90 |
" cores, set 'options(mc.cores)' to change.") |
|
|
91 |
} |