a b/NEWS.md
1
# Current development version
2
3
### Smaller Changes and Bug Fixes
4
5
6
# hsstan 0.8.2 (13 January 2024)
7
8
### Smaller Changes and Bug Fixes
9
10
- Update deprecated syntax for future rstan compatibility (thanks to
11
  Andrew Johnson for the patch).
12
13
# hsstan 0.8.1 (16 September 2021)
14
15
### Smaller Changes and Bug Fixes
16
17
- Fix bug in `projsel()` if the number of observations in the dataset is
18
  smaller than both the number of available predictors and the maximum
19
  number of iterations in the selection procedure.
20
- Add workaround for
21
  [rstantools issue #77](https://github.com/stan-dev/rstantools/issues/77)
22
  to make the base models run again correctly with the compilation changes
23
  introduced in `rstan` 2.21.
24
- Add `RcppParallel` to Imports and LinkingTo, as future versions of
25
  `rstan` require to link to the Intel TBB library.
26
- Improve validation of scalar inputs.
27
28
# hsstan 0.8 (29 June 2020)
29
30
### Major Changes
31
32
- Add the `sub.idx` option to `posterior_performance()` to select the
33
  observations to be used in the computation of the performance measures.
34
- Add the `start.from` option to run `projsel()` to start the selection
35
  procedure from a submodel different from the set of unpenalized covariates.
36
- Allow interaction terms in the formula for unpenalized covariates.
37
- Speed up matrix multiplications in `posterior_linpred()` and `projsel()`:
38
  this also benefits all other functions that use `posterior_linpred()`, such
39
  as `log_lik()`, `posterior_predict()`, `posterior_performance()` and others.
40
41
### Smaller Changes and Bug Fixes
42
43
- Fix parallelized loop boundaries in `posterior_performance()` for Windows.
44
- Speed up `posterior_performance()` for gaussian models.
45
- Handle correctly the case in which a variable is mentioned both among the
46
  unpenalized covariates and the penalized predictors.
47
- Fix bug in handling of a factor variable with multiple levels in the set of
48
  penalized predictors.
49
- Use the correct sigma term in the computation of the elpd for gaussian models.
50
- Allow running `projsel()` on models with no penalized predictors.
51
52
### Notes
53
54
- This version was used in:
55
  - [M. Colombo][mcol], A. Asadi Shehni, I. Thoma et al.,
56
    Quantitative levels of serum N-glycans in type 1 diabetes and their
57
    association with kidney disease,
58
    [_Glycobiology_ (2021) 31 (5): 613-623](https://doi.org/10.1093/glycob/cwaa106).
59
60
# hsstan 0.7 (1 May 2020)
61
62
### Major Changes
63
64
- Speed up all models up to 4-5 times by using Stan's `normal_id_glm()` and
65
  `bernoulli_logit_glm()`.
66
- Use a simpler parametrization of the regularized horseshoe prior.
67
68
### Smaller Changes and Bug Fixes
69
70
- Allow using the `iter` and `warmup` options in `kfold()`.
71
- Switch to `rstantools` 2.0.0.
72
- Fix bug in the use of the `slab.scale` parameter of `hsstan()`, as it was not
73
  squared in the computation of the slab component of the regularized horseshoe
74
  prior. The default value of 2 in the current version corresponds to using the
75
  value 4 in versions 0.6 and earlier.
76
77
# hsstan 0.6 (14 September 2019)
78
79
### Major Changes
80
81
- First version to be available on CRAN.
82
- Add the `kfold()` and  `posterior_summary()` functions.
83
- Implement parallelization on Windows using `parallel::parLapply()`.
84
- Remove the deprecated `sample.stan()` and `sample.stan.cv()`.
85
- Replace `get.cv.performance()` with `posterior_performance()`.
86
- Report the intercept-only results from `projsel()`.
87
- Add options to `plot.projsel()` for choosing the number of points to plot and
88
  whether to show a point for the null model.
89
90
### Smaller Changes and Bug Fixes
91
92
- Cap to 4 the number of cores used by default when loading the package.
93
- Don't change an already set `mc.cores` option when loading the package.
94
- Drop the internal horseshoe parameters from the stanfit object by default.
95
- Speed up the parallel loops in the projection methods.
96
- Evaluate the full model in `projsel()` only if selection stopped early.
97
- Rename the `max.num.pred` argument of `projsel()` to `max.iters`.
98
- Validate the options passed to `rstan::sampling()`.
99
- Expand the documentation and add examples.
100
101
### Notes
102
103
- This version was used in:
104
  - [M. Colombo][mcol], S.J. McGurnaghan, L.A.K. Blackbourn et al.,
105
    Comparison of serum and urinary biomarker panels with albumin creatinin
106
    ratio in the prediction of renal function decline in type 1 diabetes,
107
    [_Diabetologia_ (2020) 63 (4): 788-798](https://doi.org/10.1007/s00125-019-05081-8).
108
109
# hsstan 0.5 (11 August 2019)
110
111
### Major Changes
112
113
- Update the interface of `hsstan()`.
114
- Don't standardize the data inside `hsstan()`.
115
- Implement the thin QR decomposition and use it by default.
116
- Replace uses of `foreach()`/`%dopar%` with `parallel::mclapply()`.
117
- Add the `posterior_interval()`, `posterior_linpred()`, `posterior_predict()`
118
  `log_lik()`, `bayes_R2()`, `loo_R2()` and `waic()` functions.
119
- Change the folds format from a list of indices to a vector of fold numbers.
120
121
### Smaller Changes and Bug Fixes
122
123
- Add the `nsamples()` and `sampler.stats()` functions.
124
- Use `crossprod()`/`tcrossprod()` instead of matrix multiplications.
125
- Don't return the posterior mean of sigma in the hsstan object.
126
- Store covariates and biomarkers in the hsstan object.
127
- Remove option for using variational Bayes.
128
- Add option to control the number of Markov chains run.
129
- Fix computation of fitted values for logistic regression.
130
- Fix two errors in the computation of the elpd in `fit.submodel()`.
131
- Store the original data in the hsstan object.
132
- Use `log_lik()` instead of computing and storing the log-likelihood in Stan.
133
- Allow the use of regular expressions for `pars` in `summary.hsstan()`.
134
135
# hsstan 0.4 (24 July 2019)
136
137
### Major Changes
138
139
- Merge `sample.stan()` and `sample.stan.cv()` into `hsstan()`.
140
- Implement the regularized horseshoe prior.
141
- Add a `loo()` method for hsstan objects.
142
- Change the default `adapt.delta` argument for base models from 0.99 to 0.95.
143
- Decrease the default `scale.u` from 20 to 2.
144
145
### Smaller Changes and Bug Fixes
146
147
- Add option to set the seed of the random number generator.
148
- Add computation of log-likelihoods in the generated quantities.
149
- Use `scale()` to standardize the data in `sample.stan.cv()`.
150
- Remove the standardize option so that data is always standardized.
151
- Remove option to create a png file from `plot.projsel()`.
152
- Make `get.cv.performance()` work also on a non-cross-validated hsstan object.
153
- Add `print()` and `summary()` functions for hsstan objects.
154
- Add options for horizontal and vertical label adjustment in `plot.projsel()`.
155
156
# hsstan 0.3 (4 July 2019)
157
158
### Major Changes
159
160
- Add option to set the `adapt_delta` parameter and change the default for all
161
  models from 0.95 to 0.99.
162
- Allow to control the prior scale for the unpenalized variables.
163
164
### Smaller Changes and Bug Fixes
165
166
- Add option to control the number of iterations.
167
- Compute the elpd instead of the mlpd in the projection.
168
- Fix bug in the assignment of readable variable names.
169
- Don't compute the predicted outcome in the generated quantities block.
170
171
# hsstan 0.2 (13 November 2018)
172
173
### Major Changes
174
175
- Switch to `doParallel` since `doMC` is not packaged for Windows.
176
177
### Smaller Changes and Bug Fixes
178
179
- Enforce the direction when computing the AUC.
180
- Check that there are no missing values in the design matrix.
181
- Remove code to disable clipping of text labels from `plot.projsel()`.
182
183
### Notes
184
185
- This version was used in:
186
  - [M. Colombo][mcol], E. Valo, S.J. McGurnaghan et al.,
187
    Biomarkers associated with progression of renal disease in type 1 diabetes,
188
    [_Diabetologia_ (2019) 62 (9): 1616-1627](https://doi.org/10.1007/s00125-019-4915-0).
189
  - [A. Spiliopoulou][athina], [M. Colombo][mcol], D. Plant et al.,
190
    Association of response to TNF inhibitors in rheumatoid arthritis with
191
    quantitative trait loci for CD40 and CD39,
192
    [_Annals of the Rheumatic Diseases_ (2019) 78: 1055-1061](https://doi.org/10.1136/annrheumdis-2018-214877).
193
194
# hsstan 0.1 (14 June 2018)
195
196
- First release.
197
198
[mcol]:   https://github.com/mcol
199
[athina]: https://precmed.cphs.mvm.ed.ac.uk/athina/