[41c1e8]: / exseek / snakefiles / scripts / summarize_cross_validation.py

Download this file

125 lines (116 with data), 5.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from collections import defaultdict
import pandas as pd
import h5py
import numpy as np
from copy import deepcopy
from tqdm import tqdm
import os
has_feature_stability = True
if snakemake.wildcards.cross_validation == 'cross_validation_diffexp':
def parse_dirname(dirname):
c = dirname.split('/')
data = {}
data['classifier'], data['n_features'], data['diffexp_method'], data['fold_change_direction'] = c[-1].split('.')
data['compare_group'] = c[-2]
data['count_method'] = c[-3]
return data
elif snakemake.wildcards.cross_validation == 'cross_validation':
def parse_dirname(dirname):
c = dirname.split('/')
data = {}
data['classifier'], data['n_features'], data['selector'], data['fold_change_direction'] = c[-1].split('.')
data['compare_group'] = c[-2]
data['filter_method'], data['imputation'], data['normalization'], data['batch_removal'], data['count_method'] = c[-3].split('.')
data['preprocess_method'] = '.'.join((data['filter_method'], data['imputation'], data['normalization'], data['batch_removal']))
return data
elif snakemake.wildcards.cross_validation == 'evaluate_features':
has_feature_stability = False
def parse_dirname(dirname):
c = dirname.split('/')
data = {}
data['classifier'] = c[-1]
data['filter_method'], data['imputation'], data['normalization'], data['batch_removal'], data['count_method'] = c[-2].split('.')
data['preprocess_method'] = '.'.join((data['filter_method'], data['imputation'], data['normalization'], data['batch_removal']))
data['feature_set'] = c[-3]
data['compare_group'] = c[-4]
return data
else:
raise ValueError('unknown cross_validation directory: {}'.format(snakemake.wildcards.cross_validation))
def feature_stability(X):
'''Feature stability based on Kuncheva index
Parameters:
----------
X: array-like, shape (n_resample, n_features)
Boolean matrix indicating features selected in each resamping run
Returns:
--------
stability: float
Feature stability
'''
# signature size
s = X.sum(axis=1).mean()
# total number of features
N = X.shape[1]
# number of resamping runs
k = X.shape[0]
# number of common signatures
X = X.astype(np.int32)
r = X.dot(X.T)[np.tril_indices(k, k=-1)]
# Kuncheva index
KI = (r - ((s**2)/N))/(s - ((s**2)/N))
# pairwise stability score
stability = 2*KI.sum()/(k*(k - 1))
return stability
# read selected methods for each clustering score
# clustering_score[count_method][preprocess_method] = score_name
'''
clustering_score_names = defaultdict(dict)
for filename in snakemake.input.selected_methods:
c = filename.split('/')
count_method = c[-2]
score_name = c[-3]
with open(filename, 'r') as f:
preprocess_method = f.readline().strip()
if preprocess_method not in clustering_score_names[count_method]:
clustering_score_names[count_method][preprocess_method] = []
clustering_score_names[count_method][preprocess_method].append(score_name)
'''
columns = defaultdict(list)
summary = defaultdict(list)
for input_dir in tqdm(snakemake.input.input_dir, unit='directory'):
metadata = parse_dirname(input_dir)
# add clustering score that select the preprocess_method
#if 'preprocess_method' in metadata:
#names = clustering_score_names[metadata['count_method']][metadata['preprocess_method']]
#else:
# names = ['null']
#for clustering_score_name in names:
#metadata = deepcopy(metadata)
#metadata['clustering_score_name'] = clustering_score_name
# feature_stability
if has_feature_stability:
with h5py.File(os.path.join(input_dir, 'cross_validation.h5'), 'r') as f:
feature_selection_matrix = f['feature_selection'][:]
record = deepcopy(metadata)
record['feature_stability'] = feature_stability(feature_selection_matrix)
summary['feature_stability'].append(record)
if not columns['feature_stability']:
columns['feature_stability'] = list(record.keys())
# metrics
for subset in ('train', 'test'):
df_metrics = pd.read_table(os.path.join(input_dir, 'metrics.%s.txt'%subset), sep='\t')
df_metadata = pd.DataFrame(index=np.arange(df_metrics.shape[0]))
for key, val in metadata.items():
df_metadata[key] = val
columns['metrics.%s'%subset] = list(metadata.keys()) + df_metrics.columns.tolist()
summary['metrics.%s'%subset].append(pd.concat([df_metadata, df_metrics], axis=1))
summary['metrics.train'] = pd.concat(summary['metrics.train'], axis=0)
summary['metrics.test'] = pd.concat(summary['metrics.test'], axis=0)
summary['metrics.train'] = summary['metrics.train'].reindex(columns=columns['metrics.train'])
summary['metrics.test'] = summary['metrics.test'].reindex(columns=columns['metrics.test'])
summary['metrics.train'].to_csv(snakemake.output.metrics_train, sep='\t', header=True, index=False, na_rep='NA')
summary['metrics.test'].to_csv(snakemake.output.metrics_test, sep='\t', header=True, index=False, na_rep='NA')
if has_feature_stability:
summary['feature_stability'] = pd.DataFrame.from_records(summary['feature_stability'])
summary['feature_stability'] = summary['feature_stability'].reindex(columns=columns['feature_stability'])
summary['feature_stability'].to_csv(snakemake.output.feature_stability, sep='\t', header=True, index=False, na_rep='NA')