126 lines (118 with data), 6.3 kB
include: 'common.snakemake'
rule all:
input:
cutadapt=expand('{output_dir}/cutadapt/{sample_id}_{mate_index}.fastq.gz',
output_dir=output_dir, sample_id=sample_ids, mate_index=[1, 2]),
clean=expand('{output_dir}/unmapped/{sample_id}/clean_{mate_index}.fastq.gz',
output_dir=output_dir, sample_id=sample_ids, mate_index=[1, 2]),
summary=expand('{output_dir}/summary/cutadapt.txt', output_dir=output_dir),
jupyter=expand('{output_dir}/summary/cutadapt.ipynb', output_dir=output_dir),
html=expand('{output_dir}/summary/cutadapt.html', output_dir=output_dir)
rule cutadapt_pe:
input:
fastq1=auto_gzip_input(data_dir + '/fastq/{sample_id}_1.fastq'),
fastq2=auto_gzip_input(data_dir + '/fastq/{sample_id}_2.fastq')
output:
fastq1='{output_dir}/cutadapt/{sample_id}_1.fastq.gz',
fastq2='{output_dir}/cutadapt/{sample_id}_2.fastq.gz'
threads:
config['threads']
params:
quality_5p=config['min_base_quality_5p'],
quality_3p=config['min_base_quality_3p'],
adaptor1=lambda wildcards: '-a ' + config['adaptor1'] if len(config['adaptor1']) > 0 else '',
adaptor2=lambda wildcards: '-A ' + config['adaptor2'] if len(config['adaptor2']) > 0 else '',
adaptor1_5p=lambda wildcards: '-g' + config['adaptor1_5p'] if len(config['adaptor1_5p']) > 0 else '',
adaptor2_5p=lambda wildcards: '-G' + config['adaptor2_5p'] if len(config['adaptor2_5p']) > 0 else '',
miniL=config['min_read_length'],
quality_base=config['quality_base']
log:
'{output_dir}/log/cutadapt/{sample_id}'
threads: 3
shell:
'''cutadapt --pair-filter any -j {threads} -q {params.quality_5p},{params.quality_3p} \
{params.adaptor1} {params.adaptor2} {params.adaptor1_5p} {params.adaptor2_5p} \
--trim-n -m {params.miniL} -o >(gzip -c > {output.fastq1}) -p >(gzip -c > {output.fastq2}) \
{input.fastq1} {input.fastq2} > {log} 2>&1
'''
rule clean_fastq_pe:
input:
'{output_dir}/cutadapt/{sample_id}_{mate_index}.fastq.gz'
output:
'{output_dir}/unmapped/{sample_id}/clean_{mate_index}.fastq.gz'
wildcard_constraints:
mate_index='[12]'
shell:
'''ln -r -f -s {input} {output}
'''
rule summarize_cutadapt_pe:
input:
lambda wildcards: expand('{output_dir}/log/cutadapt/{sample_id}',
output_dir=wildcards.output_dir, sample_id=sample_ids)
output:
'{output_dir}/summary/cutadapt.txt'
run:
import pandas as pd
def parse_number(s):
return int(''.join(s.split(',')))
columns = ['sample_id', 'total_read_pairs',
'read1_with_adapters', 'read2_with_adapters',
'read_pairs_too_short', 'read_pairs_kept',
'total_bp', 'total_bp_read1', 'total_bp_read2',
'bp_quality_trimmed', 'bp_quality_trimmed_read1', 'bp_quality_trimmed_read2',
'bp_kept', 'bp_kept_read1', 'bp_kept_read2'
]
summary = []
for filename in input:
sample_id = os.path.basename(filename)
record = {'sample_id': sample_id}
section = ''
with open(filename, 'r') as fin:
for line in fin:
line = line.strip()
if line.startswith('Total read pairs processed:'):
record['total_read_pairs'] = parse_number(line.split()[-1])
elif line.startswith('Read 1 with adapter:'):
record['read1_with_adapters'] = parse_number(line.split()[-2])
elif line.startswith('Read 2 with adapter:'):
record['read2_with_adapters'] = parse_number(line.split()[-2])
elif line.startswith('Pairs that were too short:'):
record['read_pairs_too_short'] = parse_number(line.split()[-2])
elif line.startswith('Pairs written (passing filters):'):
record['read_pairs_kept'] = parse_number(line.split()[-2])
elif line.startswith('Total basepairs processed:'):
record['total_bp'] = parse_number(line.split()[-2])
section = 'total_bp'
elif line.startswith('Quality-trimmed:'):
record['bp_quality_trimmed'] = parse_number(line.split()[-3])
section = 'bp_quality_trimmed'
elif line.startswith('Total written (filtered):'):
record['bp_kept'] = parse_number(line.split()[-3])
section = 'bp_kept'
elif line.startswith('Read 1:'):
if section == 'total_bp':
record['total_bp_read1'] = parse_number(line.split()[-2])
elif section == 'bp_quality_trimmed':
record['bp_quality_trimmed_read1'] = parse_number(line.split()[-2])
elif section == 'bp_kept':
record['bp_kept_read1'] = parse_number(line.split()[-2])
elif line.startswith('Read 2:'):
if section == 'total_bp':
record['total_bp_read2'] = parse_number(line.split()[-2])
elif section == 'bp_quality_trimmed':
record['bp_quality_trimmed_read2'] = parse_number(line.split()[-2])
elif section == 'bp_kept':
record['bp_kept_read2'] = parse_number(line.split()[-2])
summary.append(record)
summary = pd.DataFrame.from_records(summary)
summary = summary.reindex(columns=columns)
summary.to_csv(output[0], sep='\t', na_rep='NA', index=False, header=True)
rule summarize_cutadapt_jupyter_se:
input:
summary='{output_dir}/summary/cutadapt.txt',
jupyter=package_dir + '/templates/summarize_cutadapt_pe.ipynb'
output:
jupyter='{output_dir}/summary/cutadapt.ipynb',
html='{output_dir}/summary/cutadapt.html'
run:
shell(nbconvert_command)