[41c1e8]: / exseek / snakefiles / cutadapt_pe.snakemake

Download this file

126 lines (118 with data), 6.3 kB

include: 'common.snakemake'

rule all:
    input:
        cutadapt=expand('{output_dir}/cutadapt/{sample_id}_{mate_index}.fastq.gz',
            output_dir=output_dir, sample_id=sample_ids, mate_index=[1, 2]),
        clean=expand('{output_dir}/unmapped/{sample_id}/clean_{mate_index}.fastq.gz',
            output_dir=output_dir, sample_id=sample_ids, mate_index=[1, 2]),
        summary=expand('{output_dir}/summary/cutadapt.txt', output_dir=output_dir),
        jupyter=expand('{output_dir}/summary/cutadapt.ipynb', output_dir=output_dir),
        html=expand('{output_dir}/summary/cutadapt.html', output_dir=output_dir)

rule cutadapt_pe:
    input:
        fastq1=auto_gzip_input(data_dir + '/fastq/{sample_id}_1.fastq'),
        fastq2=auto_gzip_input(data_dir + '/fastq/{sample_id}_2.fastq')
    output:
        fastq1='{output_dir}/cutadapt/{sample_id}_1.fastq.gz',
        fastq2='{output_dir}/cutadapt/{sample_id}_2.fastq.gz'
    threads:
        config['threads']
    params:
        quality_5p=config['min_base_quality_5p'],
        quality_3p=config['min_base_quality_3p'],
        adaptor1=lambda wildcards: '-a ' + config['adaptor1'] if len(config['adaptor1']) > 0 else '',
        adaptor2=lambda wildcards: '-A ' + config['adaptor2'] if len(config['adaptor2']) > 0 else '',
        adaptor1_5p=lambda wildcards: '-g' + config['adaptor1_5p'] if len(config['adaptor1_5p']) > 0 else '',
        adaptor2_5p=lambda wildcards: '-G' + config['adaptor2_5p'] if len(config['adaptor2_5p']) > 0 else '',
        miniL=config['min_read_length'],
        quality_base=config['quality_base']
    log:
        '{output_dir}/log/cutadapt/{sample_id}'
    threads: 3
    shell:
        '''cutadapt --pair-filter any -j {threads} -q {params.quality_5p},{params.quality_3p} \
            {params.adaptor1} {params.adaptor2} {params.adaptor1_5p} {params.adaptor2_5p} \
            --trim-n -m {params.miniL} -o >(gzip -c > {output.fastq1}) -p >(gzip -c > {output.fastq2}) \
            {input.fastq1} {input.fastq2} > {log} 2>&1
        '''

rule clean_fastq_pe:
    input:
        '{output_dir}/cutadapt/{sample_id}_{mate_index}.fastq.gz'
    output:
        '{output_dir}/unmapped/{sample_id}/clean_{mate_index}.fastq.gz'
    wildcard_constraints:
        mate_index='[12]'
    shell:
        '''ln -r -f -s {input} {output}
        '''

rule summarize_cutadapt_pe:
    input:
        lambda wildcards: expand('{output_dir}/log/cutadapt/{sample_id}',
            output_dir=wildcards.output_dir, sample_id=sample_ids)
    output:
        '{output_dir}/summary/cutadapt.txt'
    run:
        import pandas as pd
        
        def parse_number(s):
            return int(''.join(s.split(',')))

        columns = ['sample_id', 'total_read_pairs', 
            'read1_with_adapters', 'read2_with_adapters', 
            'read_pairs_too_short', 'read_pairs_kept',
            'total_bp', 'total_bp_read1', 'total_bp_read2',
            'bp_quality_trimmed', 'bp_quality_trimmed_read1', 'bp_quality_trimmed_read2',
            'bp_kept', 'bp_kept_read1', 'bp_kept_read2'
        ]
        summary = []
        for filename in input:
            sample_id = os.path.basename(filename)
            record = {'sample_id': sample_id}
            section = ''
            with open(filename, 'r') as fin:
                for line in fin:
                    line = line.strip()
                    if line.startswith('Total read pairs processed:'):
                        record['total_read_pairs'] = parse_number(line.split()[-1])
                    elif line.startswith('Read 1 with adapter:'):
                        record['read1_with_adapters'] = parse_number(line.split()[-2])
                    elif line.startswith('Read 2 with adapter:'):
                        record['read2_with_adapters'] = parse_number(line.split()[-2])
                    elif line.startswith('Pairs that were too short:'):
                        record['read_pairs_too_short'] = parse_number(line.split()[-2])
                    elif line.startswith('Pairs written (passing filters):'):
                        record['read_pairs_kept'] = parse_number(line.split()[-2])
                    elif line.startswith('Total basepairs processed:'):
                        record['total_bp'] = parse_number(line.split()[-2])
                        section = 'total_bp'
                    elif line.startswith('Quality-trimmed:'):
                        record['bp_quality_trimmed'] = parse_number(line.split()[-3])
                        section = 'bp_quality_trimmed'
                    elif line.startswith('Total written (filtered):'):
                        record['bp_kept'] = parse_number(line.split()[-3])
                        section = 'bp_kept'
                    elif line.startswith('Read 1:'):
                        if section == 'total_bp':
                            record['total_bp_read1'] = parse_number(line.split()[-2])
                        elif section == 'bp_quality_trimmed':
                            record['bp_quality_trimmed_read1'] = parse_number(line.split()[-2])
                        elif section == 'bp_kept':
                            record['bp_kept_read1'] = parse_number(line.split()[-2])
                    elif line.startswith('Read 2:'):
                        if section == 'total_bp':
                            record['total_bp_read2'] = parse_number(line.split()[-2])
                        elif section == 'bp_quality_trimmed':
                            record['bp_quality_trimmed_read2'] = parse_number(line.split()[-2])
                        elif section == 'bp_kept':
                            record['bp_kept_read2'] = parse_number(line.split()[-2])
            summary.append(record)
        summary = pd.DataFrame.from_records(summary)
        summary = summary.reindex(columns=columns)
        summary.to_csv(output[0], sep='\t', na_rep='NA', index=False, header=True)

rule summarize_cutadapt_jupyter_se:
    input:
        summary='{output_dir}/summary/cutadapt.txt',
        jupyter=package_dir + '/templates/summarize_cutadapt_pe.ipynb'
    output:
        jupyter='{output_dir}/summary/cutadapt.ipynb',
        html='{output_dir}/summary/cutadapt.html'
    run:
        shell(nbconvert_command)