[41c1e8]: / exseek / scripts / differential_expression.R

Download this file

211 lines (202 with data), 9.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#! /usr/bin/env Rscript
suppressPackageStartupMessages(library(argparse))
parser <- ArgumentParser(description='Differential expression')
parser$add_argument('-i', '--matrix', type='character', required=TRUE,
help='input count matrix. Rows are genes. Columns are samples.')
parser$add_argument('-c', '--classes', type='character', required=TRUE,
help='input sample class information. Column 1: sample_id, Column 2: class')
parser$add_argument('-s', '--samples', type='character',
help='input file containing sample ids for differential expression')
parser$add_argument('-p', '--positive-class', type='character', required=TRUE,
help='comma-separated class names to use as positive class')
parser$add_argument('-n', '--negative-class', type='character', required=TRUE,
help='comma-separated class names to use as negative class')
parser$add_argument('-b', '--batch', type='character', required=FALSE,
help='batch information to remove')
parser$add_argument('--batch-index', type='integer', default=1,
help='column number of the batch to remove')
parser$add_argument('-m', '--method', type='character', default="deseq2",
choices=c('deseq2', 'edger_exact', 'edger_glmqlf', 'edger_glmlrt', 'wilcox', 'limma', 'ttest'),
help='differential expression method to use')
parser$add_argument('--norm-method', type='character', default='TMM',
choices=c('RLE', 'CPM', 'TMM', 'upperquartile'),
help='normalization method for count-based methods')
parser$add_argument('--pseudo-count', type='double', default=1.0,
help='pseudo-count added to log2 transform in ttest')
parser$add_argument('-o', '--output-file', type='character', required=TRUE,
help='output file')
args <- parser$parse_args()
message('read count matrix: ', args$matrix)
mat <- read.table(args$matrix, header = TRUE, row.names=1, check.names=FALSE, sep='\t')
message('read class information: ', args$classes)
class_info <- read.table(args$classes, row.names=1, check.names=FALSE, header = TRUE, sep='\t', as.is=TRUE)
class_info <- class_info[colnames(mat),]
names(class_info) <- colnames(mat)
if(!is.null(args$samples)){
message('read sample ids: ', args$samples)
samples <- read.table(args$samples, check.names=FALSE, header=FALSE, as.is=TRUE)[,1]
mat <- mat[, samples]
class_info <- class_info[samples]
}
# get positive and negative class
for(cls in strsplit(args$positive_class, ',')[[1]]){
class_info[class_info == cls] <- 'positive'
}
positive_samples <- names(class_info)[class_info == 'positive']
if(length(positive_samples) == 0){
stop('No positive samples found')
}
message('Number of positive samples: ', length(positive_samples))
negative_samples <- NULL
for(cls in strsplit(args$negative_class, ',')[[1]]){
class_info[class_info == cls] <- 'negative'
}
negative_samples <- names(class_info)[class_info == 'negative']
if(length(negative_samples) == 0){
stop('No negative samples found')
}
message('Number of negative samples: ', length(negative_samples))
samples <- c(positive_samples, negative_samples)
group <- class_info[samples]
mat <- as.matrix(mat[,samples])
#class_info <- as.matrix(class_info)
#colnames(class_info) <- 'label'
mat <- as.matrix(mat)
# read batch information
if(!is.null(args$batch)){
message('read batch information from: ', args$batch)
batch <- read.table(args$batch, check.names=FALSE, header=TRUE, as.is=TRUE, row.names=1, sep='\t')
if((args$batch_index < 1) || (args$batch_index > ncol(batch))){
stop('Batch index out of bound')
}
batch <- batch[samples, args$batch_index]
}else{
batch <- NULL
}
# set normalization method
if(args$norm_method == 'CPM'){
norm_method <- 'none'
} else{
norm_method <- args$norm_method
}
message('perform differential expression using ', args$method)
# Required columns for a differential expression file: baseMean, log2FoldChange, pvalue, padj
if(args$method == 'deseq2'){
suppressPackageStartupMessages(library(DESeq2))
if(!is.null(batch)){
# include batch into regression
dds <- DESeqDataSetFromMatrix(countData = mat,
colData = as.matrix(data.frame(group=group, batch=batch)),
design = ~group + batch)
} else {
dds <- DESeqDataSetFromMatrix(countData = mat,
colData = as.matrix(data.frame(group=group)),
design = ~group)
}
dds <- DESeq(dds)
res <- results(dds, contrast=c('group', 'positive', 'negative'))
#res <- res[order(res$padj)]
write.table(as.data.frame(res), args$output_file, sep='\t', quote=FALSE, row.names=TRUE)
} else if(grepl('^edger_', args$method)) {
suppressPackageStartupMessages(library(edgeR))
y <- DGEList(counts=mat, samples=samples, group=group)
y <- calcNormFactors(y, method=norm_method)
if(!is.null(batch)){
# regress out batch information as an additive term
design <- model.matrix(~group + batch)
} else {
design <- model.matrix(~group)
}
y <- estimateDisp(y, design)
if(args$method == 'edger_glmqlf'){
fit <- glmQLFit(y, design)
test <- glmQLFTest(fit, coef=2)
res <- topTags(test, n=nrow(mat), sort.by='none')
} else if(args$method == 'edger_glmlrt'){
fit <- glmFit(y, design)
test <- glmLRT(fit, coef=2)
res <- topTags(test, n=nrow(mat), sort.by='none')
} else if(args$method == 'edger_exact'){
if(!is.null(batch)) message('ignoring batch information for exact text')
test <- exactTest(y)
res <- topTags(test, n=nrow(mat), sort.by='none')
}
res <- cbind(res$table, baseMean=2^(res$table$logCPM))
# rename columns
mapped_names <- colnames(res)
for(i in 1:ncol(res)){
if(colnames(res)[i] == 'logFC'){
mapped_names[i] <- 'log2FoldChange'
}else if(colnames(res)[i] == 'PValue'){
mapped_names[i] <- 'pvalue'
}else if(colnames(res)[i] == 'FDR') {
mapped_names[i] <- 'padj'
}else{
mapped_names[i] <- colnames(res)[i]
}
}
colnames(res) <- mapped_names
# write results to file
message('Write results to output file: ', args$output_file)
write.table(res, args$output_file, sep='\t', quote=FALSE, row.names=TRUE)
} else if(args$method == 'wilcox') {
suppressPackageStartupMessages(library(edgeR))
# normalize
matrix_cpm <- cpm(mat, method=norm_method)
test_func <- function(x){
wilcox.test(x[group == 'negative'], x[group == 'positive'], alternative='two.sided')$p.value
}
pvalues <- apply(matrix_cpm, 1, test_func)
matrix_logcpm = log2(matrix + args$pseudo_count)
logFC <- apply(matrix_logcpm[,which(group == 'positive')], 1, mean) -
apply(matrix_logcpm[,which(group == 'negative')], 1, mean)
res <- data.frame(log2FoldChange=logFC,
pvalue=pvalues,
padj=p.adjust(pvalues, method='BH'),
baseMean=apply(matrix_cpm, 1, mean))
message('Write results to output file: ', args$output_file)
write.table(res, args$output_file, sep='\t', quote=FALSE, row.names=TRUE)
} else if(args$method == 'limma'){
suppressPackageStartupMessages(library(limma))
suppressPackageStartupMessages(library(edgeR))
y <- DGEList(counts=mat, samples=samples, group=group)
y <- calcNormFactors(y, method=norm_method)
if(!is.null(batch)){
model <- model.matrix(~group + batch)
} else {
model <- model.matrix(~group)
}
y <- voom(y, model, plot=FALSE)
fit <- lmFit(y, model)
fit <- eBayes(fit, robust=TRUE, trend=TRUE)
#fit2 <- contrasts.ft(fit)
#fit2 <- eBayes(fit2, robust=TRUE, trend=TRUE)
#top_table <- topTable(fit2, sort.by='none', n=Inf)
top_table <- topTable(fit, coef=2, sort.by='none', n=Inf)
# rename columns
mapped_names <- colnames(top_table)
for(i in 1:ncol(top_table)){
if(colnames(top_table)[i] == 'logFC'){
mapped_names[i] <- 'log2FoldChange'
}else if(colnames(top_table)[i] == 'P.Value'){
mapped_names[i] <- 'pvalue'
}else if(colnames(top_table)[i] == 'adj.P.Val') {
mapped_names[i] <- 'padj'
}else{
mapped_names[i] <- colnames(top_table)[i]
}
}
colnames(top_table) <- mapped_names
# write results to file
message('Write results to output file: ', args$output_file)
write.table(top_table, args$output_file, sep='\t', quote=FALSE, row.names=TRUE)
} else if(args$method == "ttest") {
suppressPackageStartupMessages(library(genefilter))
#mat <- log2(mat + args$pseudo_count)
res <- rowttests(mat, as.factor(group))
res$padj <- p.adjust(res$p.value, method='BH')
res$log2FoldChange <- rowMeans(mat[, group == 'positive']) - rowMeans(mat[, group == 'negative'])
write.table(res, args$output_file, sep='\t', quote=FALSE, row.names=TRUE)
} else {
stop('unknown differential expression method: ', args$method)
}