[4c33d4]: / exseek / config / evaluate_features.yaml

Download this file

95 lines (90 with data), 2.5 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
features: null
transpose: true
selector_grid_search: true
selector_grid_search_params:
cv:
splitter: StratifiedShuffleSplit
n_splits: 5
test_size: 0.1
iid: false
scoring: roc_auc
preprocess_steps:
# apply log transformation
- log_transform:
name: LogTransform
type: transformer
enabled: true
params:
base: 2
pseudo_count: 1
# method to scale features across samples
- scale_features:
name: StandardScaler
type: scaler
enabled: true
params:
with_mean: true
# template for grid_search_params in classifiers
classifier_grid_search_params:
cv:
splitter: StratifiedShuffleSplit
n_splits: 5
test_size: 0.1
iid: false
scoring: roc_auc
classifiers:
LogRegL2:
classifier: LogisticRegression
# parameters for the classifier used for feature selection
classifier_params:
penalty: l2
solver: liblinear
# grid search for hyper-parameters for the classifier
grid_search: true
grid_search_params:
param_grid:
C: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]
RandomForest:
classifier: RandomForestClassifier
grid_search: true
grid_search_params:
param_grid:
n_estimators: [25, 50, 75]
max_depth: [3, 4, 5]
RBFSVM:
classifier: SVC
classifier_params:
kernel: rbf
gamma: scale
grid_search: true
grid_search_params:
param_grid:
C: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]
DecisionTree:
classifier: DecisionTreeClassifier
grid_search: true
grid_search_params:
param_grid:
max_depth: [2, 3, 4, 5, 6, 7, 8]
MLP:
classifier: MLPClassifier
classifier_params:
activation: relu
solver: adam
max_iter: 40
grid_search: true
grid_search_params:
param_grid:
hidden_layer_sizes: [[50], [100], [150], [200], [250], [300]]
# cross-validation parameters for performance evaluation
cv_params:
splitter: StratifiedShuffleSplit
# number of train-test splits for cross-validation
n_splits: 50
# number or proportion of samples to use as test set
test_size: 0.1
# scoring metric for performance evaluation
scoring: roc_auc
# method for computing sample weight
# balanced: compute sample weight from data such that classes are balanced
sample_weight: balanced