[41c1e8]: / exseek / config / machine_learning.yaml

Download this file

234 lines (226 with data), 6.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
features: null
transpose: true
selector_grid_search: true
selector_grid_search_params:
cv:
splitter: StratifiedShuffleSplit
n_splits: 5
test_size: 0.1
iid: false
scoring: roc_auc
preprocess_steps:
# apply log transformation
- log_transform:
name: LogTransform
type: transformer
enabled: true
params:
base: 2
pseudo_count: 1
# method to scale features across samples
- scale_features:
name: StandardScaler
type: scaler
enabled: true
params:
with_mean: true
# all possible selectors
feature_selector_params:
DiffExp_TTest:
name: DiffExpFilter
type: selector
params:
# rscript_path: /usr/bin/Rscript
score_type: neglogp
method: ttest
MaxFeatures_RandomForest:
name: MaxFeatures
type: selector
params:
classifier: RandomForestClassifier
grid_search: true
grid_search_params:
param_grid:
n_estimators: [25, 50, 75]
max_depth: [3, 4, 5]
MaxFeatures_LogRegL2:
name: MaxFeatures
type: selector
params:
classifier: LogisticRegression
# parameters for the classifier used for feature selection
classifier_params:
penalty: l2
solver: liblinear
# grid search for hyper-parameters for the classifier
grid_search: true
grid_search_params:
param_grid:
C: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]
MaxFeatures_LogRegL1:
name: MaxFeatures
type: selector
params:
classifier: LogisticRegression
# parameters for the classifier used for feature selection
classifier_params:
penalty: l1
solver: liblinear
# grid search for hyper-parameters for the classifier
grid_search: true
grid_search_params:
param_grid:
C: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]
MaxFeatures_ElasticNet:
name: MaxFeatures
type: selector
params:
classifier: SGDClassifier
classifier_params:
penalty: elasticnet
max_iter: 100
tol: 0.001
grid_search: true
grid_search_params:
param_grid:
alpha: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]
l1_ratio: [0.15, 0.30, 0.45, 0.60, 0.75, 0.90]
SIS:
name: SIS
type: selector
params:
# rscript_path: /usr/bin/Rscript
sis_params:
family: binomial
tune: bic
penalty: lasso
varISIS: cons
ReliefF:
name: ReliefF
type: selector
params:
n_jobs: 1
SURF:
name: SURF
type: selector
params:
n_jobs: 1
MultiSURF:
name: MultiSURF
type: selector
params:
n_jobs: 1
RandomSubset_RandomForest:
name: RandomSubsetSelector
type: selector
params:
subset_size: 50
n_subsets: 20
classifier: RandomForestClassifier
grid_search: true
grid_search_params:
param_grid:
n_estimators: [25, 50, 75]
max_depth: [3, 4, 5]
RandomSubset_LogRegL2:
name: RandomSubsetSelector
type: selector
params:
subset_size: 50
n_subsets: 20
classifier: LogisticRegression
# parameters for the classifier used for feature selection
classifier_params:
penalty: l2
solver: liblinear
# grid search for hyper-parameters for the classifier
grid_search: true
grid_search_params:
param_grid:
C: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]
RandomSubset_LogRegL1:
name: RandomSubsetSelector
type: selector
params:
subset_size: 50
n_subsets: 20
classifier: LogisticRegression
# parameters for the classifier used for feature selection
classifier_params:
penalty: l1
solver: liblinear
# grid search for hyper-parameters for the classifier
grid_search: true
grid_search_params:
param_grid:
C: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]
# template for grid_search_params in classifiers
classifier_grid_search_params:
cv:
splitter: StratifiedShuffleSplit
n_splits: 5
test_size: 0.1
iid: false
scoring: roc_auc
classifier_params:
LogRegL2:
classifier: LogisticRegression
# parameters for the classifier used for feature selection
classifier_params:
penalty: l2
solver: liblinear
# grid search for hyper-parameters for the classifier
grid_search: true
grid_search_params:
param_grid:
C: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]
RandomForest:
classifier: RandomForestClassifier
grid_search: true
grid_search_params:
param_grid:
n_estimators: [25, 50, 75]
max_depth: [3, 4, 5]
RBFSVM:
classifier: SVC
classifier_params:
kernel: rbf
gamma: scale
grid_search: true
grid_search_params:
param_grid:
C: [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]
DecisionTree:
classifier: DecisionTreeClassifier
grid_search: true
grid_search_params:
param_grid:
max_depth: [2, 3, 4, 5, 6, 7, 8]
MLP:
classifier: MLPClassifier
classifier_params:
activation: relu
solver: adam
max_iter: 40
grid_search: true
grid_search_params:
param_grid:
hidden_layer_sizes: [[50], [100], [150], [200], [250], [300]]
# cross-validation parameters for performance evaluation
cv_params:
splitter: StratifiedShuffleSplit
# number of train-test splits for cross-validation
n_splits: 5
# number or proportion of samples to use as test set
test_size: 0.1
# scoring metric for performance evaluation
scoring: roc_auc
# method for computing sample weight
# balanced: compute sample weight from data such that classes are balanced
sample_weight: balanced
# list of feature selector names
feature_selectors: [DiffExp_TTest, MaxFeatures_RandomForest, MaxFeatures_LogRegL2, MaxFeatures_LogRegL1,
MaxFeatures_ElasticNet, SIS, ReliefF, SURF, MultiSURF, RandomSubset_RandomForest,
RandomSubset_LogRegL2, RandomSubset_LogRegL1]
# list of classifier names
classifiers: [LogRegL2, RandomForest, RBFSVM, DecisionTree, MLP]