|
a |
|
b/code/config.py |
|
|
1 |
""" |
|
|
2 |
DeepSlide |
|
|
3 |
Contains all hyperparameters for the entire repository. |
|
|
4 |
|
|
|
5 |
Authors: Jason Wei, Behnaz Abdollahi, Saeed Hassanpour |
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
import argparse |
|
|
9 |
from pathlib import Path |
|
|
10 |
|
|
|
11 |
import torch |
|
|
12 |
|
|
|
13 |
from compute_stats import compute_stats |
|
|
14 |
from utils import (get_classes, get_log_csv_name) |
|
|
15 |
|
|
|
16 |
# Source: https://stackoverflow.com/questions/12151306/argparse-way-to-include-default-values-in-help |
|
|
17 |
parser = argparse.ArgumentParser( |
|
|
18 |
description="DeepSlide", |
|
|
19 |
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
|
20 |
|
|
|
21 |
########################################### |
|
|
22 |
# USER INPUTS # |
|
|
23 |
########################################### |
|
|
24 |
# Input folders for training images. |
|
|
25 |
# Must contain subfolders of images labelled by class. |
|
|
26 |
# If your two classes are 'a' and 'n', you must have a/*.jpg with the images in class a and |
|
|
27 |
# n/*.jpg with the images in class n. |
|
|
28 |
parser.add_argument( |
|
|
29 |
"--all_wsi", |
|
|
30 |
type=Path, |
|
|
31 |
default=Path("all_wsi"), |
|
|
32 |
help="Location of the WSI organized in subfolders by class") |
|
|
33 |
# For splitting into validation set. |
|
|
34 |
parser.add_argument("--val_wsi_per_class", |
|
|
35 |
type=int, |
|
|
36 |
default=20, |
|
|
37 |
help="Number of WSI per class to use in validation set") |
|
|
38 |
# For splitting into testing set, remaining images used in train. |
|
|
39 |
parser.add_argument("--test_wsi_per_class", |
|
|
40 |
type=int, |
|
|
41 |
default=30, |
|
|
42 |
help="Number of WSI per class to use in test set") |
|
|
43 |
# When splitting, do you want to move WSI or copy them? |
|
|
44 |
parser.add_argument( |
|
|
45 |
"--keep_orig_copy", |
|
|
46 |
type=bool, |
|
|
47 |
default=True, |
|
|
48 |
help= |
|
|
49 |
"Whether to move or copy the WSI when splitting into training, validation, and test sets" |
|
|
50 |
) |
|
|
51 |
|
|
|
52 |
####################################### |
|
|
53 |
# GENERAL # |
|
|
54 |
####################################### |
|
|
55 |
# Number of processes to use. |
|
|
56 |
parser.add_argument("--num_workers", |
|
|
57 |
type=int, |
|
|
58 |
default=8, |
|
|
59 |
help="Number of workers to use for IO") |
|
|
60 |
# Default shape for ResNet in PyTorch. |
|
|
61 |
parser.add_argument("--patch_size", |
|
|
62 |
type=int, |
|
|
63 |
default=224, |
|
|
64 |
help="Size of the patches extracted from the WSI") |
|
|
65 |
|
|
|
66 |
########################################## |
|
|
67 |
# DATA SPLIT # |
|
|
68 |
########################################## |
|
|
69 |
# The names of your to-be folders. |
|
|
70 |
parser.add_argument("--wsi_train", |
|
|
71 |
type=Path, |
|
|
72 |
default=Path("wsi_train"), |
|
|
73 |
help="Location to be created to store WSI for training") |
|
|
74 |
parser.add_argument("--wsi_val", |
|
|
75 |
type=Path, |
|
|
76 |
default=Path("wsi_val"), |
|
|
77 |
help="Location to be created to store WSI for validation") |
|
|
78 |
parser.add_argument("--wsi_test", |
|
|
79 |
type=Path, |
|
|
80 |
default=Path("wsi_test"), |
|
|
81 |
help="Location to be created to store WSI for testing") |
|
|
82 |
|
|
|
83 |
# Where the CSV file labels will go. |
|
|
84 |
parser.add_argument("--labels_train", |
|
|
85 |
type=Path, |
|
|
86 |
default=Path("labels_train.csv"), |
|
|
87 |
help="Location to store the CSV file labels for training") |
|
|
88 |
parser.add_argument( |
|
|
89 |
"--labels_val", |
|
|
90 |
type=Path, |
|
|
91 |
default=Path("labels_val.csv"), |
|
|
92 |
help="Location to store the CSV file labels for validation") |
|
|
93 |
parser.add_argument("--labels_test", |
|
|
94 |
type=Path, |
|
|
95 |
default=Path("labels_test.csv"), |
|
|
96 |
help="Location to store the CSV file labels for testing") |
|
|
97 |
|
|
|
98 |
############################################################### |
|
|
99 |
# PROCESSING AND PATCH GENERATION # |
|
|
100 |
############################################################### |
|
|
101 |
# This is the input for model training, automatically built. |
|
|
102 |
parser.add_argument( |
|
|
103 |
"--train_folder", |
|
|
104 |
type=Path, |
|
|
105 |
default=Path("train_folder"), |
|
|
106 |
help="Location of the automatically built training input folder") |
|
|
107 |
|
|
|
108 |
# Folders of patches by WSI in training set, used for finding training accuracy at WSI level. |
|
|
109 |
parser.add_argument( |
|
|
110 |
"--patches_eval_train", |
|
|
111 |
type=Path, |
|
|
112 |
default=Path("patches_eval_train"), |
|
|
113 |
help= |
|
|
114 |
"Folders of patches by WSI in training set, used for finding training accuracy at WSI level" |
|
|
115 |
) |
|
|
116 |
# Folders of patches by WSI in validation set, used for finding validation accuracy at WSI level. |
|
|
117 |
parser.add_argument( |
|
|
118 |
"--patches_eval_val", |
|
|
119 |
type=Path, |
|
|
120 |
default=Path("patches_eval_val"), |
|
|
121 |
help= |
|
|
122 |
"Folders of patches by WSI in validation set, used for finding validation accuracy at WSI level" |
|
|
123 |
) |
|
|
124 |
# Folders of patches by WSI in test set, used for finding test accuracy at WSI level. |
|
|
125 |
parser.add_argument( |
|
|
126 |
"--patches_eval_test", |
|
|
127 |
type=Path, |
|
|
128 |
default=Path("patches_eval_test"), |
|
|
129 |
help= |
|
|
130 |
"Folders of patches by WSI in testing set, used for finding test accuracy at WSI level" |
|
|
131 |
) |
|
|
132 |
|
|
|
133 |
# Target number of training patches per class. |
|
|
134 |
parser.add_argument("--num_train_per_class", |
|
|
135 |
type=int, |
|
|
136 |
default=80000, |
|
|
137 |
help="Target number of training samples per class") |
|
|
138 |
|
|
|
139 |
# Only looks for purple images and filters whitespace. |
|
|
140 |
parser.add_argument( |
|
|
141 |
"--type_histopath", |
|
|
142 |
type=bool, |
|
|
143 |
default=True, |
|
|
144 |
help="Only look for purple histopathology images and filter whitespace") |
|
|
145 |
|
|
|
146 |
# Number of purple points for region to be considered purple. |
|
|
147 |
parser.add_argument( |
|
|
148 |
"--purple_threshold", |
|
|
149 |
type=int, |
|
|
150 |
default=100, |
|
|
151 |
help="Number of purple points for region to be considered purple.") |
|
|
152 |
|
|
|
153 |
# Scalar to use for reducing image to check for purple. |
|
|
154 |
parser.add_argument( |
|
|
155 |
"--purple_scale_size", |
|
|
156 |
type=int, |
|
|
157 |
default=15, |
|
|
158 |
help="Scalar to use for reducing image to check for purple.") |
|
|
159 |
|
|
|
160 |
# Sliding window overlap factor (for testing). |
|
|
161 |
# For generating patches during the training phase, we slide a window to overlap by some factor. |
|
|
162 |
# Must be an integer. 1 means no overlap, 2 means overlap by 1/2, 3 means overlap by 1/3. |
|
|
163 |
# Recommend 2 for very high resolution, 3 for medium, and 5 not extremely high resolution images. |
|
|
164 |
parser.add_argument("--slide_overlap", |
|
|
165 |
type=int, |
|
|
166 |
default=3, |
|
|
167 |
help="Sliding window overlap factor for the testing phase") |
|
|
168 |
|
|
|
169 |
# Overlap factor to use when generating validation patches. |
|
|
170 |
parser.add_argument( |
|
|
171 |
"--gen_val_patches_overlap_factor", |
|
|
172 |
type=float, |
|
|
173 |
default=1.5, |
|
|
174 |
help="Overlap factor to use when generating validation patches.") |
|
|
175 |
|
|
|
176 |
parser.add_argument("--image_ext", |
|
|
177 |
type=str, |
|
|
178 |
default="jpg", |
|
|
179 |
help="Image extension for saving patches") |
|
|
180 |
|
|
|
181 |
# Produce patches for testing and validation by folder. The code only works |
|
|
182 |
# for now when testing and validation are split by folder. |
|
|
183 |
parser.add_argument( |
|
|
184 |
"--by_folder", |
|
|
185 |
type=bool, |
|
|
186 |
default=True, |
|
|
187 |
help="Produce patches for testing and validation by folder.") |
|
|
188 |
|
|
|
189 |
######################################### |
|
|
190 |
# TRANSFORM # |
|
|
191 |
######################################### |
|
|
192 |
parser.add_argument( |
|
|
193 |
"--color_jitter_brightness", |
|
|
194 |
type=float, |
|
|
195 |
default=0.5, |
|
|
196 |
help= |
|
|
197 |
"Random brightness jitter to use in data augmentation for ColorJitter() transform" |
|
|
198 |
) |
|
|
199 |
parser.add_argument( |
|
|
200 |
"--color_jitter_contrast", |
|
|
201 |
type=float, |
|
|
202 |
default=0.5, |
|
|
203 |
help= |
|
|
204 |
"Random contrast jitter to use in data augmentation for ColorJitter() transform" |
|
|
205 |
) |
|
|
206 |
parser.add_argument( |
|
|
207 |
"--color_jitter_saturation", |
|
|
208 |
type=float, |
|
|
209 |
default=0.5, |
|
|
210 |
help= |
|
|
211 |
"Random saturation jitter to use in data augmentation for ColorJitter() transform" |
|
|
212 |
) |
|
|
213 |
parser.add_argument( |
|
|
214 |
"--color_jitter_hue", |
|
|
215 |
type=float, |
|
|
216 |
default=0.2, |
|
|
217 |
help= |
|
|
218 |
"Random hue jitter to use in data augmentation for ColorJitter() transform" |
|
|
219 |
) |
|
|
220 |
|
|
|
221 |
######################################## |
|
|
222 |
# TRAINING # |
|
|
223 |
######################################## |
|
|
224 |
# Model hyperparameters. |
|
|
225 |
parser.add_argument("--num_epochs", |
|
|
226 |
type=int, |
|
|
227 |
default=20, |
|
|
228 |
help="Number of epochs for training") |
|
|
229 |
# Choose from [18, 34, 50, 101, 152]. |
|
|
230 |
parser.add_argument( |
|
|
231 |
"--num_layers", |
|
|
232 |
type=int, |
|
|
233 |
default=18, |
|
|
234 |
help= |
|
|
235 |
"Number of layers to use in the ResNet model from [18, 34, 50, 101, 152]") |
|
|
236 |
parser.add_argument("--learning_rate", |
|
|
237 |
type=float, |
|
|
238 |
default=0.001, |
|
|
239 |
help="Learning rate to use for gradient descent") |
|
|
240 |
parser.add_argument("--batch_size", |
|
|
241 |
type=int, |
|
|
242 |
default=16, |
|
|
243 |
help="Mini-batch size to use for training") |
|
|
244 |
parser.add_argument("--weight_decay", |
|
|
245 |
type=float, |
|
|
246 |
default=1e-4, |
|
|
247 |
help="Weight decay (L2 penalty) to use in optimizer") |
|
|
248 |
parser.add_argument("--learning_rate_decay", |
|
|
249 |
type=float, |
|
|
250 |
default=0.85, |
|
|
251 |
help="Learning rate decay amount per epoch") |
|
|
252 |
parser.add_argument("--resume_checkpoint", |
|
|
253 |
type=bool, |
|
|
254 |
default=False, |
|
|
255 |
help="Resume model from checkpoint file") |
|
|
256 |
parser.add_argument("--save_interval", |
|
|
257 |
type=int, |
|
|
258 |
default=1, |
|
|
259 |
help="Number of epochs between saving checkpoints") |
|
|
260 |
# Where models are saved. |
|
|
261 |
parser.add_argument("--checkpoints_folder", |
|
|
262 |
type=Path, |
|
|
263 |
default=Path("checkpoints"), |
|
|
264 |
help="Directory to save model checkpoints to") |
|
|
265 |
|
|
|
266 |
# Name of checkpoint file to load from. |
|
|
267 |
parser.add_argument( |
|
|
268 |
"--checkpoint_file", |
|
|
269 |
type=Path, |
|
|
270 |
default=Path("xyz.pt"), |
|
|
271 |
help="Checkpoint file to load if resume_checkpoint_path is True") |
|
|
272 |
# ImageNet pretrain? |
|
|
273 |
parser.add_argument("--pretrain", |
|
|
274 |
type=bool, |
|
|
275 |
default=False, |
|
|
276 |
help="Use pretrained ResNet weights") |
|
|
277 |
parser.add_argument("--log_folder", |
|
|
278 |
type=Path, |
|
|
279 |
default=Path("logs"), |
|
|
280 |
help="Directory to save logs to") |
|
|
281 |
|
|
|
282 |
########################################## |
|
|
283 |
# PREDICTION # |
|
|
284 |
########################################## |
|
|
285 |
# Selecting the best model. |
|
|
286 |
# Automatically select the model with the highest validation accuracy. |
|
|
287 |
parser.add_argument( |
|
|
288 |
"--auto_select", |
|
|
289 |
type=bool, |
|
|
290 |
default=True, |
|
|
291 |
help="Automatically select the model with the highest validation accuracy") |
|
|
292 |
# Where to put the training prediction CSV files. |
|
|
293 |
parser.add_argument( |
|
|
294 |
"--preds_train", |
|
|
295 |
type=Path, |
|
|
296 |
default=Path("preds_train"), |
|
|
297 |
help="Directory for outputting training prediction CSV files") |
|
|
298 |
# Where to put the validation prediction CSV files. |
|
|
299 |
parser.add_argument( |
|
|
300 |
"--preds_val", |
|
|
301 |
type=Path, |
|
|
302 |
default=Path("preds_val"), |
|
|
303 |
help="Directory for outputting validation prediction CSV files") |
|
|
304 |
# Where to put the testing prediction CSV files. |
|
|
305 |
parser.add_argument( |
|
|
306 |
"--preds_test", |
|
|
307 |
type=Path, |
|
|
308 |
default=Path("preds_test"), |
|
|
309 |
help="Directory for outputting testing prediction CSV files") |
|
|
310 |
|
|
|
311 |
########################################## |
|
|
312 |
# EVALUATION # |
|
|
313 |
########################################## |
|
|
314 |
# Folder for outputting WSI predictions based on each threshold. |
|
|
315 |
parser.add_argument( |
|
|
316 |
"--inference_train", |
|
|
317 |
type=Path, |
|
|
318 |
default=Path("inference_train"), |
|
|
319 |
help= |
|
|
320 |
"Folder for outputting WSI training predictions based on each threshold") |
|
|
321 |
parser.add_argument( |
|
|
322 |
"--inference_val", |
|
|
323 |
type=Path, |
|
|
324 |
default=Path("inference_val"), |
|
|
325 |
help= |
|
|
326 |
"Folder for outputting WSI validation predictions based on each threshold") |
|
|
327 |
parser.add_argument( |
|
|
328 |
"--inference_test", |
|
|
329 |
type=Path, |
|
|
330 |
default=Path("inference_test"), |
|
|
331 |
help="Folder for outputting WSI testing predictions based on each threshold" |
|
|
332 |
) |
|
|
333 |
|
|
|
334 |
# For visualization. |
|
|
335 |
parser.add_argument( |
|
|
336 |
"--vis_train", |
|
|
337 |
type=Path, |
|
|
338 |
default=Path("vis_train"), |
|
|
339 |
help="Folder for outputting the WSI training prediction visualizations") |
|
|
340 |
parser.add_argument( |
|
|
341 |
"--vis_val", |
|
|
342 |
type=Path, |
|
|
343 |
default=Path("vis_val"), |
|
|
344 |
help="Folder for outputting the WSI validation prediction visualizations") |
|
|
345 |
parser.add_argument( |
|
|
346 |
"--vis_test", |
|
|
347 |
type=Path, |
|
|
348 |
default=Path("vis_test"), |
|
|
349 |
help="Folder for outputting the WSI testing prediction visualizations") |
|
|
350 |
|
|
|
351 |
####################################################### |
|
|
352 |
# ARGUMENTS FROM ARGPARSE # |
|
|
353 |
####################################################### |
|
|
354 |
args = parser.parse_args() |
|
|
355 |
|
|
|
356 |
# Device to use for PyTorch code. |
|
|
357 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
|
358 |
|
|
|
359 |
# Automatically read in the classes. |
|
|
360 |
classes = get_classes(folder=args.all_wsi) |
|
|
361 |
num_classes = len(classes) |
|
|
362 |
|
|
|
363 |
# This is the input for model training, automatically built. |
|
|
364 |
train_patches = args.train_folder.joinpath("train") |
|
|
365 |
val_patches = args.train_folder.joinpath("val") |
|
|
366 |
|
|
|
367 |
# Compute the mean and standard deviation of the image patches from the specified folder. |
|
|
368 |
path_mean, path_std = compute_stats(folderpath=train_patches, |
|
|
369 |
image_ext=args.image_ext) |
|
|
370 |
|
|
|
371 |
# Only used is resume_checkpoint is True. |
|
|
372 |
resume_checkpoint_path = args.checkpoints_folder.joinpath(args.checkpoint_file) |
|
|
373 |
|
|
|
374 |
# Named with date and time. |
|
|
375 |
log_csv = get_log_csv_name(log_folder=args.log_folder) |
|
|
376 |
|
|
|
377 |
# Does nothing if auto_select is True. |
|
|
378 |
eval_model = args.checkpoints_folder.joinpath(args.checkpoint_file) |
|
|
379 |
|
|
|
380 |
# Find the best threshold for filtering noise (discard patches with a confidence less than this threshold). |
|
|
381 |
threshold_search = (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) |
|
|
382 |
|
|
|
383 |
# For visualization. |
|
|
384 |
# This order is the same order as your sorted classes. |
|
|
385 |
colors = ("red", "white", "blue", "green", "purple", "orange", "black", "pink", |
|
|
386 |
"yellow") |
|
|
387 |
|
|
|
388 |
# Print the configuration. |
|
|
389 |
# Source: https://stackoverflow.com/questions/44689546/how-to-print-out-a-dictionary-nicely-in-python/44689627 |
|
|
390 |
# chr(10) and chr(9) are ways of going around the f-string limitation of |
|
|
391 |
# not allowing the '\' character inside. |
|
|
392 |
print(f"############### CONFIGURATION ###############\n" |
|
|
393 |
f"{chr(10).join(f'{k}:{chr(9)}{v}' for k, v in vars(args).items())}\n" |
|
|
394 |
f"device:\t{device}\n" |
|
|
395 |
f"classes:\t{classes}\n" |
|
|
396 |
f"num_classes:\t{num_classes}\n" |
|
|
397 |
f"train_patches:\t{train_patches}\n" |
|
|
398 |
f"val_patches:\t{val_patches}\n" |
|
|
399 |
f"path_mean:\t{path_mean}\n" |
|
|
400 |
f"path_std:\t{path_std}\n" |
|
|
401 |
f"resume_checkpoint_path:\t{resume_checkpoint_path}\n" |
|
|
402 |
f"log_csv:\t{log_csv}\n" |
|
|
403 |
f"eval_model:\t{eval_model}\n" |
|
|
404 |
f"threshold_search:\t{threshold_search}\n" |
|
|
405 |
f"colors:\t{colors}\n" |
|
|
406 |
f"\n#####################################################\n\n\n") |