--- a +++ b/code/config.py @@ -0,0 +1,406 @@ +""" +DeepSlide +Contains all hyperparameters for the entire repository. + +Authors: Jason Wei, Behnaz Abdollahi, Saeed Hassanpour +""" + +import argparse +from pathlib import Path + +import torch + +from compute_stats import compute_stats +from utils import (get_classes, get_log_csv_name) + +# Source: https://stackoverflow.com/questions/12151306/argparse-way-to-include-default-values-in-help +parser = argparse.ArgumentParser( + description="DeepSlide", + formatter_class=argparse.ArgumentDefaultsHelpFormatter) + +########################################### +# USER INPUTS # +########################################### +# Input folders for training images. +# Must contain subfolders of images labelled by class. +# If your two classes are 'a' and 'n', you must have a/*.jpg with the images in class a and +# n/*.jpg with the images in class n. +parser.add_argument( + "--all_wsi", + type=Path, + default=Path("all_wsi"), + help="Location of the WSI organized in subfolders by class") +# For splitting into validation set. +parser.add_argument("--val_wsi_per_class", + type=int, + default=20, + help="Number of WSI per class to use in validation set") +# For splitting into testing set, remaining images used in train. +parser.add_argument("--test_wsi_per_class", + type=int, + default=30, + help="Number of WSI per class to use in test set") +# When splitting, do you want to move WSI or copy them? +parser.add_argument( + "--keep_orig_copy", + type=bool, + default=True, + help= + "Whether to move or copy the WSI when splitting into training, validation, and test sets" +) + +####################################### +# GENERAL # +####################################### +# Number of processes to use. +parser.add_argument("--num_workers", + type=int, + default=8, + help="Number of workers to use for IO") +# Default shape for ResNet in PyTorch. +parser.add_argument("--patch_size", + type=int, + default=224, + help="Size of the patches extracted from the WSI") + +########################################## +# DATA SPLIT # +########################################## +# The names of your to-be folders. +parser.add_argument("--wsi_train", + type=Path, + default=Path("wsi_train"), + help="Location to be created to store WSI for training") +parser.add_argument("--wsi_val", + type=Path, + default=Path("wsi_val"), + help="Location to be created to store WSI for validation") +parser.add_argument("--wsi_test", + type=Path, + default=Path("wsi_test"), + help="Location to be created to store WSI for testing") + +# Where the CSV file labels will go. +parser.add_argument("--labels_train", + type=Path, + default=Path("labels_train.csv"), + help="Location to store the CSV file labels for training") +parser.add_argument( + "--labels_val", + type=Path, + default=Path("labels_val.csv"), + help="Location to store the CSV file labels for validation") +parser.add_argument("--labels_test", + type=Path, + default=Path("labels_test.csv"), + help="Location to store the CSV file labels for testing") + +############################################################### +# PROCESSING AND PATCH GENERATION # +############################################################### +# This is the input for model training, automatically built. +parser.add_argument( + "--train_folder", + type=Path, + default=Path("train_folder"), + help="Location of the automatically built training input folder") + +# Folders of patches by WSI in training set, used for finding training accuracy at WSI level. +parser.add_argument( + "--patches_eval_train", + type=Path, + default=Path("patches_eval_train"), + help= + "Folders of patches by WSI in training set, used for finding training accuracy at WSI level" +) +# Folders of patches by WSI in validation set, used for finding validation accuracy at WSI level. +parser.add_argument( + "--patches_eval_val", + type=Path, + default=Path("patches_eval_val"), + help= + "Folders of patches by WSI in validation set, used for finding validation accuracy at WSI level" +) +# Folders of patches by WSI in test set, used for finding test accuracy at WSI level. +parser.add_argument( + "--patches_eval_test", + type=Path, + default=Path("patches_eval_test"), + help= + "Folders of patches by WSI in testing set, used for finding test accuracy at WSI level" +) + +# Target number of training patches per class. +parser.add_argument("--num_train_per_class", + type=int, + default=80000, + help="Target number of training samples per class") + +# Only looks for purple images and filters whitespace. +parser.add_argument( + "--type_histopath", + type=bool, + default=True, + help="Only look for purple histopathology images and filter whitespace") + +# Number of purple points for region to be considered purple. +parser.add_argument( + "--purple_threshold", + type=int, + default=100, + help="Number of purple points for region to be considered purple.") + +# Scalar to use for reducing image to check for purple. +parser.add_argument( + "--purple_scale_size", + type=int, + default=15, + help="Scalar to use for reducing image to check for purple.") + +# Sliding window overlap factor (for testing). +# For generating patches during the training phase, we slide a window to overlap by some factor. +# Must be an integer. 1 means no overlap, 2 means overlap by 1/2, 3 means overlap by 1/3. +# Recommend 2 for very high resolution, 3 for medium, and 5 not extremely high resolution images. +parser.add_argument("--slide_overlap", + type=int, + default=3, + help="Sliding window overlap factor for the testing phase") + +# Overlap factor to use when generating validation patches. +parser.add_argument( + "--gen_val_patches_overlap_factor", + type=float, + default=1.5, + help="Overlap factor to use when generating validation patches.") + +parser.add_argument("--image_ext", + type=str, + default="jpg", + help="Image extension for saving patches") + +# Produce patches for testing and validation by folder. The code only works +# for now when testing and validation are split by folder. +parser.add_argument( + "--by_folder", + type=bool, + default=True, + help="Produce patches for testing and validation by folder.") + +######################################### +# TRANSFORM # +######################################### +parser.add_argument( + "--color_jitter_brightness", + type=float, + default=0.5, + help= + "Random brightness jitter to use in data augmentation for ColorJitter() transform" +) +parser.add_argument( + "--color_jitter_contrast", + type=float, + default=0.5, + help= + "Random contrast jitter to use in data augmentation for ColorJitter() transform" +) +parser.add_argument( + "--color_jitter_saturation", + type=float, + default=0.5, + help= + "Random saturation jitter to use in data augmentation for ColorJitter() transform" +) +parser.add_argument( + "--color_jitter_hue", + type=float, + default=0.2, + help= + "Random hue jitter to use in data augmentation for ColorJitter() transform" +) + +######################################## +# TRAINING # +######################################## +# Model hyperparameters. +parser.add_argument("--num_epochs", + type=int, + default=20, + help="Number of epochs for training") +# Choose from [18, 34, 50, 101, 152]. +parser.add_argument( + "--num_layers", + type=int, + default=18, + help= + "Number of layers to use in the ResNet model from [18, 34, 50, 101, 152]") +parser.add_argument("--learning_rate", + type=float, + default=0.001, + help="Learning rate to use for gradient descent") +parser.add_argument("--batch_size", + type=int, + default=16, + help="Mini-batch size to use for training") +parser.add_argument("--weight_decay", + type=float, + default=1e-4, + help="Weight decay (L2 penalty) to use in optimizer") +parser.add_argument("--learning_rate_decay", + type=float, + default=0.85, + help="Learning rate decay amount per epoch") +parser.add_argument("--resume_checkpoint", + type=bool, + default=False, + help="Resume model from checkpoint file") +parser.add_argument("--save_interval", + type=int, + default=1, + help="Number of epochs between saving checkpoints") +# Where models are saved. +parser.add_argument("--checkpoints_folder", + type=Path, + default=Path("checkpoints"), + help="Directory to save model checkpoints to") + +# Name of checkpoint file to load from. +parser.add_argument( + "--checkpoint_file", + type=Path, + default=Path("xyz.pt"), + help="Checkpoint file to load if resume_checkpoint_path is True") +# ImageNet pretrain? +parser.add_argument("--pretrain", + type=bool, + default=False, + help="Use pretrained ResNet weights") +parser.add_argument("--log_folder", + type=Path, + default=Path("logs"), + help="Directory to save logs to") + +########################################## +# PREDICTION # +########################################## +# Selecting the best model. +# Automatically select the model with the highest validation accuracy. +parser.add_argument( + "--auto_select", + type=bool, + default=True, + help="Automatically select the model with the highest validation accuracy") +# Where to put the training prediction CSV files. +parser.add_argument( + "--preds_train", + type=Path, + default=Path("preds_train"), + help="Directory for outputting training prediction CSV files") +# Where to put the validation prediction CSV files. +parser.add_argument( + "--preds_val", + type=Path, + default=Path("preds_val"), + help="Directory for outputting validation prediction CSV files") +# Where to put the testing prediction CSV files. +parser.add_argument( + "--preds_test", + type=Path, + default=Path("preds_test"), + help="Directory for outputting testing prediction CSV files") + +########################################## +# EVALUATION # +########################################## +# Folder for outputting WSI predictions based on each threshold. +parser.add_argument( + "--inference_train", + type=Path, + default=Path("inference_train"), + help= + "Folder for outputting WSI training predictions based on each threshold") +parser.add_argument( + "--inference_val", + type=Path, + default=Path("inference_val"), + help= + "Folder for outputting WSI validation predictions based on each threshold") +parser.add_argument( + "--inference_test", + type=Path, + default=Path("inference_test"), + help="Folder for outputting WSI testing predictions based on each threshold" +) + +# For visualization. +parser.add_argument( + "--vis_train", + type=Path, + default=Path("vis_train"), + help="Folder for outputting the WSI training prediction visualizations") +parser.add_argument( + "--vis_val", + type=Path, + default=Path("vis_val"), + help="Folder for outputting the WSI validation prediction visualizations") +parser.add_argument( + "--vis_test", + type=Path, + default=Path("vis_test"), + help="Folder for outputting the WSI testing prediction visualizations") + +####################################################### +# ARGUMENTS FROM ARGPARSE # +####################################################### +args = parser.parse_args() + +# Device to use for PyTorch code. +device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") + +# Automatically read in the classes. +classes = get_classes(folder=args.all_wsi) +num_classes = len(classes) + +# This is the input for model training, automatically built. +train_patches = args.train_folder.joinpath("train") +val_patches = args.train_folder.joinpath("val") + +# Compute the mean and standard deviation of the image patches from the specified folder. +path_mean, path_std = compute_stats(folderpath=train_patches, + image_ext=args.image_ext) + +# Only used is resume_checkpoint is True. +resume_checkpoint_path = args.checkpoints_folder.joinpath(args.checkpoint_file) + +# Named with date and time. +log_csv = get_log_csv_name(log_folder=args.log_folder) + +# Does nothing if auto_select is True. +eval_model = args.checkpoints_folder.joinpath(args.checkpoint_file) + +# Find the best threshold for filtering noise (discard patches with a confidence less than this threshold). +threshold_search = (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) + +# For visualization. +# This order is the same order as your sorted classes. +colors = ("red", "white", "blue", "green", "purple", "orange", "black", "pink", + "yellow") + +# Print the configuration. +# Source: https://stackoverflow.com/questions/44689546/how-to-print-out-a-dictionary-nicely-in-python/44689627 +# chr(10) and chr(9) are ways of going around the f-string limitation of +# not allowing the '\' character inside. +print(f"############### CONFIGURATION ###############\n" + f"{chr(10).join(f'{k}:{chr(9)}{v}' for k, v in vars(args).items())}\n" + f"device:\t{device}\n" + f"classes:\t{classes}\n" + f"num_classes:\t{num_classes}\n" + f"train_patches:\t{train_patches}\n" + f"val_patches:\t{val_patches}\n" + f"path_mean:\t{path_mean}\n" + f"path_std:\t{path_std}\n" + f"resume_checkpoint_path:\t{resume_checkpoint_path}\n" + f"log_csv:\t{log_csv}\n" + f"eval_model:\t{eval_model}\n" + f"threshold_search:\t{threshold_search}\n" + f"colors:\t{colors}\n" + f"\n#####################################################\n\n\n")