|
a |
|
b/notebooks/scRNAseq_compilation.Rmd |
|
|
1 |
--- |
|
|
2 |
title: "Analysis of scRNA-seq data (compilation)" |
|
|
3 |
date: "Last modified: `r format(Sys.time(), '%B %d, %Y')`" |
|
|
4 |
tags: [scRNA-seq, melanoma, immunotherapy, PBMCs] |
|
|
5 |
output: |
|
|
6 |
html_document: |
|
|
7 |
theme: flatly |
|
|
8 |
highlight: zenburn |
|
|
9 |
toc: true |
|
|
10 |
number_sections: false |
|
|
11 |
toc_depth: 2 |
|
|
12 |
toc_float: |
|
|
13 |
collapsed: false |
|
|
14 |
smooth_scroll: true |
|
|
15 |
code_folding: hide |
|
|
16 |
self_contained: yes |
|
|
17 |
--- |
|
|
18 |
|
|
|
19 |
# Project Description |
|
|
20 |
|
|
|
21 |
This project aims to identify therapeutic targets for melanoma patients based on scRNAseq data analysis. |
|
|
22 |
|
|
|
23 |
## Datasets |
|
|
24 |
|
|
|
25 |
Disease datasets: |
|
|
26 |
|
|
|
27 |
* Dataset 1 (Treatment Response Dataset) |
|
|
28 |
- Contains treatment response data |
|
|
29 |
- Includes responder/non-responder classifications |
|
|
30 |
- Focus on immunotherapy outcomes |
|
|
31 |
|
|
|
32 |
* Dataset 2 (Tumor Cell Dataset) |
|
|
33 |
- Characterizes tumor cell heterogeneity |
|
|
34 |
- Includes cell type annotations |
|
|
35 |
- Focus on tumor cell populations |
|
|
36 |
|
|
|
37 |
* Dataset 3 (Tumor Microenvironment Dataset) |
|
|
38 |
- Maps the tumor microenvironment |
|
|
39 |
- Contains malignant/non-malignant classifications |
|
|
40 |
- Includes detailed immune cell typing |
|
|
41 |
|
|
|
42 |
Control datasets: |
|
|
43 |
|
|
|
44 |
* Dataset 4 (Control Melanocyte Dataset) |
|
|
45 |
- Normal melanocyte control data |
|
|
46 |
- Reference for non-malignant state |
|
|
47 |
- Baseline expression profiles |
|
|
48 |
|
|
|
49 |
* Dataset 5 (Control Immune Dataset) |
|
|
50 |
- Normal immune cell control data |
|
|
51 |
- Reference for immune cell states |
|
|
52 |
- Baseline immune profiles |
|
|
53 |
|
|
|
54 |
## Processes/Analyses |
|
|
55 |
|
|
|
56 |
The following processing or analytical steps were conducted: |
|
|
57 |
|
|
|
58 |
0. Environment initialization |
|
|
59 |
1. scRNAseq data consolidation and quality control |
|
|
60 |
2. Cell clustering based on UMAP dimensionality reduction |
|
|
61 |
3. Biomarker identification based on UMAP cluster groups |
|
|
62 |
4. Differential gene expression analysis |
|
|
63 |
5. Gene set enrichment analysis |
|
|
64 |
6. Cell classification using Random Forests |
|
|
65 |
7. Output saving (if prompted) |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
# 0. Environment initialization |
|
|
69 |
|
|
|
70 |
Install required packages. |
|
|
71 |
|
|
|
72 |
```{r install_packages, results="hide", message=F, warning=F, error=F} |
|
|
73 |
|
|
|
74 |
# Initiate Renv (for reproducibility) |
|
|
75 |
renv::init() |
|
|
76 |
|
|
|
77 |
# Define packages to install |
|
|
78 |
pkg.list = c('renv', 'svDialogs', 'vroom', 'dplyr', 'DT', 'openxlsx', 'progress', |
|
|
79 |
'ggplot2', 'ggrepel', 'ggvenn', 'ggfortify', 'pheatmap', |
|
|
80 |
'patchwork', 'Seurat', 'harmony', 'MAST', 'enrichR', 'UpSetR', |
|
|
81 |
'singleCellNet') |
|
|
82 |
|
|
|
83 |
# Install MAST (if needed) |
|
|
84 |
if ('MAST' %in% pkg.install) { |
|
|
85 |
if (!requireNamespace('BiocManager', quietly=T)) { |
|
|
86 |
install.packages('BiocManager') |
|
|
87 |
} |
|
|
88 |
BiocManager::install('MAST') |
|
|
89 |
pkg.install <- pkg.install[!('MAST' %in% pkg.install)] |
|
|
90 |
} |
|
|
91 |
|
|
|
92 |
# Install SingleCellNet (if needed) |
|
|
93 |
if ('singleCellNet' %in% pkg.install) { |
|
|
94 |
install.packages("devtools") |
|
|
95 |
devtools::install_github("pcahan1/singleCellNet") |
|
|
96 |
pkg.install <- pkg.install[!('singleCellNet' %in% pkg.install)] |
|
|
97 |
} |
|
|
98 |
|
|
|
99 |
# Define packages not already installed |
|
|
100 |
pkg.install <- pkg.list[!(pkg.list %in% installed.packages()[, 'Package'])] |
|
|
101 |
|
|
|
102 |
# Install uninstalled packages |
|
|
103 |
if (length(pkg.install) > 0) { |
|
|
104 |
install.packages(pkg.install) |
|
|
105 |
} |
|
|
106 |
|
|
|
107 |
``` |
|
|
108 |
|
|
|
109 |
Load installed packages. |
|
|
110 |
|
|
|
111 |
```{r load_packages, results="hide", message=F, warning=F, error=F} |
|
|
112 |
|
|
|
113 |
# Load packages |
|
|
114 |
library(renv) # for version control + reproducibility |
|
|
115 |
library(svDialogs) # for prompting user-input |
|
|
116 |
library(vroom) # for quickly reading data |
|
|
117 |
library(dplyr) # for data processing |
|
|
118 |
library(DT) # to display datatables |
|
|
119 |
library(rio) # to load all worksheets in a workbook |
|
|
120 |
library(openxlsx) # to write data to excel |
|
|
121 |
library(progress) # to display progress bar |
|
|
122 |
library(ggplot2) # for data visualization |
|
|
123 |
library(ggrepel) # to use geom_pont_repel() |
|
|
124 |
library(ggvenn) # to visualize venn diagrams |
|
|
125 |
library(ggfortify) # to visualize PCA plots |
|
|
126 |
library(pheatmap) # to visualize heatmaps |
|
|
127 |
library(patchwork) # for combining plots |
|
|
128 |
library(Seurat) # for scRNA-seq analysis |
|
|
129 |
library(harmony) # to integration of scRNA-seq data |
|
|
130 |
library(MAST) # for scRNAseq DEG analysis |
|
|
131 |
library(enrichR) # to perform GSEA |
|
|
132 |
library(UpSetR) # to visualize multiple set comparisons |
|
|
133 |
library(singleCellNet) # for RF implementation |
|
|
134 |
|
|
|
135 |
``` |
|
|
136 |
|
|
|
137 |
## Custom functions |
|
|
138 |
|
|
|
139 |
`qc_filter()`: ilter data based on QC for scRNA-seq data. |
|
|
140 |
|
|
|
141 |
```{r qc_filter, results="hide", message=F, warning=F, error=F} |
|
|
142 |
|
|
|
143 |
qc_filter <- function(obj, feat.t=c(200, 2500), pct.mt.t=5, var.method='vst', |
|
|
144 |
feat.n=2000, qc.plot=T, top.n=10, title='') { |
|
|
145 |
|
|
|
146 |
############################ FUNCTION DESCRIPTION ############################ |
|
|
147 |
# feat.t = lower and upper limits on unique gene counts |
|
|
148 |
# pct.mt.t = threshold of level in mitochondrial contamination |
|
|
149 |
# var.method = method for selecting highly variable genes |
|
|
150 |
# feat.n = number of variable genes to select |
|
|
151 |
# qc.plot = boolean whether to generate plots to decide downstream analyses |
|
|
152 |
# title = string to use for plot title |
|
|
153 |
############################## BEGIN FUNCTION ################################ |
|
|
154 |
|
|
|
155 |
# determine percentage of mitochondrial contamination |
|
|
156 |
obj[['pct.mt']] <- PercentageFeatureSet(obj, pattern='^MT-') |
|
|
157 |
# filter + nomalize + scale data |
|
|
158 |
obj <- obj %>% |
|
|
159 |
subset(., subset=(nFeature_RNA > feat.t[1]) & (nFeature_RNA < feat.t[2]) & |
|
|
160 |
(pct.mt < pct.mt.t)) %>% NormalizeData(.) %>% |
|
|
161 |
FindVariableFeatures(., selection.method=var.method) %>% |
|
|
162 |
ScaleData(.) %>% RunPCA(., features=VariableFeatures(object=.)) |
|
|
163 |
# generate follow-up QC plots (if prompted) |
|
|
164 |
if (qc.plot) { |
|
|
165 |
p1 <- VariableFeaturePlot(obj) %>% |
|
|
166 |
LabelPoints(plot=., points=head(VariableFeatures(obj), top.n), repel=T) |
|
|
167 |
p2 <- ElbowPlot(obj) |
|
|
168 |
plot(p1 + p2 + plot_annotation(title=title)) |
|
|
169 |
} |
|
|
170 |
# return output |
|
|
171 |
return(obj) |
|
|
172 |
} |
|
|
173 |
``` |
|
|
174 |
|
|
|
175 |
`de_analyze()`: conduct differential expression (DE) analysis based on unpaired Student's t-test. |
|
|
176 |
|
|
|
177 |
```{r de_analyze, results="hide", message=F, warning=F, error=F} |
|
|
178 |
|
|
|
179 |
de_analyze <- function(m1, m2, alt='two.sided', paired=F, var.equal=F, |
|
|
180 |
adj.method='bonferroni', t=0.05, de.plot=F, title='') { |
|
|
181 |
|
|
|
182 |
############################ FUNCTION DESCRIPTION ############################ |
|
|
183 |
# m1, m2 = expression matrices to compare |
|
|
184 |
# alt, paired, var.equal = arguments for t.test() function |
|
|
185 |
# adj.method = method for calculating adjusted p-value |
|
|
186 |
# t = threshold for significance |
|
|
187 |
# de.plot = boolean whether to generate a volcano plot |
|
|
188 |
############################## BEGIN FUNCTION ################################ |
|
|
189 |
|
|
|
190 |
# make sure two matrices have same number of rows |
|
|
191 |
if (nrow(m1) != nrow(m2)) { |
|
|
192 |
stop('Row length does not match between the provided matrices.') |
|
|
193 |
} |
|
|
194 |
# make sure gene names align between matrices |
|
|
195 |
if (!all(rownames(m1) == rownames(m2))) { |
|
|
196 |
stop('Gene names do not align between provided matrices.') |
|
|
197 |
} |
|
|
198 |
# instantiate output variable |
|
|
199 |
results <- data.frame(gene=rownames(m1), |
|
|
200 |
t.stat=vector(mode='numeric', length=nrow(m1)), |
|
|
201 |
p.val=vector(mode='numeric', length=nrow(m1))) |
|
|
202 |
# conduct unpaired t-test with unequal variance for each gene |
|
|
203 |
pb <- progress_bar$new( |
|
|
204 |
format=' analyzing [:bar] :percent time left: :eta', total=nrow(m1)) |
|
|
205 |
for (i in 1:nrow(m1)) { |
|
|
206 |
pb$tick() |
|
|
207 |
x <- m1[i, ]; y <- m2[i, ] |
|
|
208 |
r <- t.test(x, y, alternative=alt, paired=paired, var.equal=var.equal) |
|
|
209 |
results$t.stat[i] <- r$statistic |
|
|
210 |
results$p.val[i] <- r$p.value |
|
|
211 |
} |
|
|
212 |
# determine adjusted p-values |
|
|
213 |
results$q.val <- p.adjust(results$p.val, method=adj.method) |
|
|
214 |
# add additional fields |
|
|
215 |
results <- results %>% |
|
|
216 |
mutate(Significance=case_when(q.val < t & t.stat > 0 ~ 'Up', |
|
|
217 |
q.val < t & t.stat < 0 ~ 'Down', |
|
|
218 |
T ~ 'NS')) %>% arrange(q.val) |
|
|
219 |
# generate volcano plot (if prompted) |
|
|
220 |
if (de.plot) { |
|
|
221 |
p <- results %>% arrange(t.stat) %>% ggplot(data=., |
|
|
222 |
aes(x=t.stat, y=-log10(q.val), col=Significance, label=gene)) + |
|
|
223 |
geom_point() + geom_text_repel() + theme_minimal() + |
|
|
224 |
scale_color_manual(values=c('blue', 'black', 'red')) + ggtitle(title) |
|
|
225 |
plot(p) |
|
|
226 |
} |
|
|
227 |
# return output |
|
|
228 |
return(results) |
|
|
229 |
} |
|
|
230 |
|
|
|
231 |
``` |
|
|
232 |
|
|
|
233 |
## Additional settings. |
|
|
234 |
|
|
|
235 |
```{r settings} |
|
|
236 |
|
|
|
237 |
# Adjust system settings |
|
|
238 |
Sys.setenv("VROOM_CONNECTION_SIZE" = 131072 * 2) |
|
|
239 |
|
|
|
240 |
# Save plots? (default: F) |
|
|
241 |
save.plots <- dlgInput('Save all plots? (T/F)', F)$res |
|
|
242 |
|
|
|
243 |
# Set seed (for reproducibility) |
|
|
244 |
set.seed(123) |
|
|
245 |
|
|
|
246 |
``` |
|
|
247 |
|
|
|
248 |
|
|
|
249 |
# 1. scRNAseq data consolidation and quality control |
|
|
250 |
|
|
|
251 |
Load all scRNA-seq files or load already saved workspace. |
|
|
252 |
|
|
|
253 |
```{r load_data, warning=F, message=F} |
|
|
254 |
|
|
|
255 |
f <- list.files() |
|
|
256 |
if (any(endsWith(f, '.RData'))) { |
|
|
257 |
load(f[endsWith(f, '.RData')][1]) |
|
|
258 |
} else { |
|
|
259 |
# Define variables to store data |
|
|
260 |
obj <- list(); meta <- list() |
|
|
261 |
|
|
|
262 |
# Dataset 1: Treatment Response Dataset |
|
|
263 |
meta$dataset1 <- read.delim(file='data/dataset1/metadata.txt') |
|
|
264 |
x <- vroom('data/dataset1/counts.txt', col_names=F) |
|
|
265 |
x <- x[, 1:nrow(meta$dataset1)] %>% as.matrix(.) |
|
|
266 |
y <- read.delim('data/dataset1/genes.txt', header=F) |
|
|
267 |
rownames(x) <- make.unique(y$V1) |
|
|
268 |
colnames(x) <- meta$dataset1$ID |
|
|
269 |
obj$dataset1 <- CreateSeuratObject(x, project='dataset1', |
|
|
270 |
min.cells=3, min.features=200) |
|
|
271 |
obj$dataset1$Treatment <- as.factor(meta$dataset1$Treatment) |
|
|
272 |
obj$dataset1$Response <- as.factor(meta$dataset1$Response) |
|
|
273 |
rm(x, y); gc() |
|
|
274 |
|
|
|
275 |
# Dataset 2: Tumor Cell Dataset |
|
|
276 |
meta$dataset2 <- read.csv('data/dataset2/metadata.csv') |
|
|
277 |
x <- vroom('data/dataset2/expression_matrix.csv') |
|
|
278 |
y <- as.matrix(x[, -1]); rownames(y) <- x$...1 |
|
|
279 |
obj$dataset2 <- CreateSeuratObject(y, project='dataset2', |
|
|
280 |
min.cells=3, min.features=200) |
|
|
281 |
obj$dataset2$type <- as.factor(meta$dataset2$cell.types) |
|
|
282 |
|
|
|
283 |
# Dataset 3: Tumor Microenvironment Dataset |
|
|
284 |
x <- vroom('data/dataset3/expression_matrix.txt') |
|
|
285 |
y <- as.matrix(x[-c(1:3), -1]); rownames(y) <- x$Cell[-c(1:3)] |
|
|
286 |
obj$dataset3 <- CreateSeuratObject(y, project='dataset3', |
|
|
287 |
min.cells=3, min.features=200) |
|
|
288 |
meta$dataset3 <- data.frame(Tumor=t(x[1, -1]), |
|
|
289 |
Malignant=case_when(x[2, -1] == 1 ~ 'No', |
|
|
290 |
x[2, -1] == 2 ~ 'Yes', |
|
|
291 |
x[2, -1] == 0 ~ 'Unresolved'), |
|
|
292 |
NMType=case_when(x[3, -1] == 1 ~ 'T', |
|
|
293 |
x[3, -1] == 2 ~ 'B', |
|
|
294 |
x[3, -1] == 3 ~ 'Macro', |
|
|
295 |
x[3, -1] == 4 ~ 'Endo', |
|
|
296 |
x[3, -1] == 5 ~ 'CAF', |
|
|
297 |
x[3, -1] == 6 ~ 'NK', |
|
|
298 |
x[3, -1] == 0 ~ 'NA')) |
|
|
299 |
obj$dataset3$Malignant <- meta$dataset3$Malignant |
|
|
300 |
obj$dataset3$NMType <- meta$dataset3$NMType |
|
|
301 |
|
|
|
302 |
# Dataset 4: Control Melanocyte Dataset |
|
|
303 |
x <- vroom('data/dataset4/expression_matrix.csv') |
|
|
304 |
y <- as.matrix(x[, -1]); rownames(y) <- x$...1 |
|
|
305 |
obj$dataset4 <- CreateSeuratObject(y, project='dataset4', |
|
|
306 |
min.cells=3, min.features=200) |
|
|
307 |
|
|
|
308 |
# Dataset 5: Control Immune Dataset |
|
|
309 |
meta$dataset5 <- read.table('data/dataset5/metadata.tsv', |
|
|
310 |
sep='\t', header=T) |
|
|
311 |
x <- vroom('data/dataset5/matrix.tsv') |
|
|
312 |
y <- as.matrix(x[, -1]); rownames(y) <- x$Gene.Name |
|
|
313 |
obj$dataset5 <- CreateSeuratObject(y, project='dataset5', |
|
|
314 |
min.cells=3, min.features=200) |
|
|
315 |
obj$dataset5$sample <- as.factor(meta$dataset5$sample) |
|
|
316 |
|
|
|
317 |
# Clear unnecessary memory |
|
|
318 |
rm(f, x, y, meta); gc() |
|
|
319 |
} |
|
|
320 |
|
|
|
321 |
``` |
|
|
322 |
|
|
|
323 |
Combine all datasets together into single Seurat object. Also apply `harmony` to remove clustering bias based on dataset source. |
|
|
324 |
|
|
|
325 |
```{r combine_data, warning=F, message=F} |
|
|
326 |
|
|
|
327 |
# Combine all datasets |
|
|
328 |
if (!exists('data.all')) { |
|
|
329 |
data.all <- list() |
|
|
330 |
} |
|
|
331 |
if (!('raw' %in% names(data.all))) { |
|
|
332 |
data.all$raw <- merge(obj$dataset1, obj$dataset2) %>% |
|
|
333 |
merge(., obj$dataset3) %>% merge(., obj$dataset4) %>% merge(., obj$dataset5) |
|
|
334 |
} |
|
|
335 |
|
|
|
336 |
# Add source information |
|
|
337 |
if (!('Source' %in% names(data.all$raw@meta.data))) { |
|
|
338 |
data.all$raw$Source <- c(rep(names(obj)[1], ncol(obj$dataset1)), |
|
|
339 |
rep(names(obj)[2], ncol(obj$dataset2)), |
|
|
340 |
rep(names(obj)[3], ncol(obj$dataset3)), |
|
|
341 |
rep(names(obj)[4], ncol(obj$dataset4)), |
|
|
342 |
rep(names(obj)[5], ncol(obj$dataset5))) |
|
|
343 |
} |
|
|
344 |
|
|
|
345 |
# Apply QC |
|
|
346 |
if (!('proc' %in% names(data.all))) { |
|
|
347 |
data.all$proc <- qc_filter(data.all$raw) |
|
|
348 |
} |
|
|
349 |
|
|
|
350 |
# Visualize integration results |
|
|
351 |
p1 <- DimPlot(object=data.all$proc, reduction='pca', pt.size=0.1, |
|
|
352 |
group.by='Source') |
|
|
353 |
p2 <- VlnPlot(object=data.all$proc, features='PC_1', pt.size=0.1, |
|
|
354 |
group.by='Source') |
|
|
355 |
p1 + p2 |
|
|
356 |
if (save.plots) { |
|
|
357 |
ggsave('plots/QC_no_harmony.pdf', width=10, height=5, units='in') |
|
|
358 |
} |
|
|
359 |
|
|
|
360 |
# Apply harmony (to remove clustering based on dataset source) |
|
|
361 |
if (!('harmony' %in% names(data.all$proc@reductions))) { |
|
|
362 |
data.all$proc <- data.all$proc %>% RunHarmony('Source', plot_convergence=T) |
|
|
363 |
} |
|
|
364 |
|
|
|
365 |
# Visualize integration results (after harmony) |
|
|
366 |
p1 <- DimPlot(object=data.all$proc, reduction='harmony', pt.size=0.1, |
|
|
367 |
group.by='Source') |
|
|
368 |
p2 <- VlnPlot(object=data.all$proc, features='harmony_1', pt.size=0.1, |
|
|
369 |
group.by='Source') |
|
|
370 |
p1 + p2 |
|
|
371 |
if (save.plots) { |
|
|
372 |
ggsave('plots/QC_w_harmony.pdf', width=10, height=5, units='in') |
|
|
373 |
} |
|
|
374 |
|
|
|
375 |
``` |
|
|
376 |
|
|
|
377 |
|
|
|
378 |
# 2. Cell clustering based on UMAP dimensionality reduction |
|
|
379 |
|
|
|
380 |
Cluster cells based on uniform manifold approximation and projection (UMAP). |
|
|
381 |
|
|
|
382 |
```{r UMAP_clustering, warning=F, message=T} |
|
|
383 |
|
|
|
384 |
# Visualize UMAP plots (runtime: ~5 minutes) |
|
|
385 |
if (!('umap' %in% names(data.all$proc@reductions))) { |
|
|
386 |
data.all$proc <- data.all$proc %>% |
|
|
387 |
RunUMAP(reduction='harmony', dims=1:20) %>% |
|
|
388 |
FindNeighbors(reduction='harmony', dims=1:20) %>% |
|
|
389 |
FindClusters(resolution=0.5) %>% identity() |
|
|
390 |
} |
|
|
391 |
|
|
|
392 |
# by dataset source |
|
|
393 |
p <- DimPlot(data.all$proc, reduction='umap', group.by='Source', pt.size=0.1, |
|
|
394 |
split.by='Source') + ggtitle('UMAP split by dataset source'); plot(p) |
|
|
395 |
# by cluster (unlabeled) |
|
|
396 |
p <- DimPlot(data.all$proc, reduction='umap', label=T, pt.size=0.1) + |
|
|
397 |
ggtitle('UMAP of combined scRNA-seq data (unlabeled)'); plot(p) |
|
|
398 |
if (save.plots) { |
|
|
399 |
ggsave('plots/UMAP_unlabeled.pdf', width=10, height=5, units='in') |
|
|
400 |
} |
|
|
401 |
|
|
|
402 |
# by cluster (labeled) |
|
|
403 |
lab <- c('Tumor cell', 'Technical error 1', 'Cytotoxic CD8 T cell 1', 'B cell', |
|
|
404 |
'Melanocytes 1', 'Macrophage', 'Cytotoxic CD8 T cell 2', 'Technical error 2', |
|
|
405 |
'Memory T cell', 'Melanocytes 2', 'Dysfunctional CD8 T cell', |
|
|
406 |
'Cytotoxic CD8 T cell 3', '? 1', 'Melanocytes 3', 'Activated cell', |
|
|
407 |
'Exhausted T cell', 'Cytotoxic T cell', '? 2', '? 3', 'Melanocytes 4', '? 4') |
|
|
408 |
names(lab) <- levels(data.all$proc) |
|
|
409 |
plot.data <- data.all$proc %>% RenameIdents(., lab) |
|
|
410 |
p <- DimPlot(plot.data, reduction='umap', label=T, pt.size=0.1) + |
|
|
411 |
ggtitle('UMAP of combined scRNA-seq data (labeled)'); plot(p) |
|
|
412 |
if (save.plots) { |
|
|
413 |
ggsave('plots/UMAP_labeled.pdf', width=10, height=5, units='in') |
|
|
414 |
} |
|
|
415 |
|
|
|
416 |
``` |
|
|
417 |
|
|
|
418 |
|
|
|
419 |
# 3. Biomarker identification based on UMAP cluster groups |
|
|
420 |
|
|
|
421 |
Determine biomarkers based on UMAP cluster assignment. |
|
|
422 |
|
|
|
423 |
```{r biomarkers, warning=F, message=T} |
|
|
424 |
|
|
|
425 |
# Find all biomarkers based on clustering (runtime: ~30 minutes) |
|
|
426 |
if (!('bm' %in% names(data.all))) { |
|
|
427 |
data.all$bm <- FindAllMarkers(data.all$proc, min.pct=0.25, logfc.threshold=0.25) |
|
|
428 |
} |
|
|
429 |
|
|
|
430 |
# View table of top 3 biomarkers for each cluster |
|
|
431 |
d <- data.all$bm %>% group_by(cluster) %>% slice_max(n=3, order_by=avg_log2FC) |
|
|
432 |
datatable(d) |
|
|
433 |
|
|
|
434 |
# Visualize ridge plots based on biomarkers of interest |
|
|
435 |
ridge.feat <- dlg_list(sort(unique(d$gene)), multiple=T)$res |
|
|
436 |
p <- RidgePlot(data.all$proc, features=ridge.feat, |
|
|
437 |
ncol=ceiling(length(ridge.feat) / 2)); plot(p) |
|
|
438 |
if (save.plots) { |
|
|
439 |
ggsave('plots/biomarker_ridge_plots.pdf', width=10, height=10, units='in') |
|
|
440 |
} |
|
|
441 |
|
|
|
442 |
``` |
|
|
443 |
|
|
|
444 |
|
|
|
445 |
# 4. Differential gene expression analysis |
|
|
446 |
|
|
|
447 |
Determine differentially expressed genes (DEGs) for the following group comparisons: |
|
|
448 |
|
|
|
449 |
* Disease vs. control (tumor) |
|
|
450 |
* Disease vs. control (immune cells, bulk) |
|
|
451 |
* Disease vs. control (immune cells, cluster-based) |
|
|
452 |
* Responder vs. non-responder (specific to GSE120575) |
|
|
453 |
|
|
|
454 |
Of note, DEGs were determined using a custom function for unpaired Student's t-test and [MAST](https://bioconductor.org/packages/release/bioc/html/MAST.html). |
|
|
455 |
```{r DE_initialization, warning=F, message=T, eval=!('data' %in% de)} |
|
|
456 |
|
|
|
457 |
# Instantiate DE variable + relevant fields |
|
|
458 |
de <- list(); de$ttest <- list(); de$mast <- list() |
|
|
459 |
|
|
|
460 |
# Define data to work with |
|
|
461 |
de$data <- GetAssayData(object=data.all$proc, slot='data') |
|
|
462 |
|
|
|
463 |
``` |
|
|
464 |
|
|
|
465 |
## Case: disease vs. control (tumor) |
|
|
466 |
|
|
|
467 |
Comparison between benign vs. tumor skin cells. |
|
|
468 |
Estimated runtime: ~15 minutes. |
|
|
469 |
|
|
|
470 |
```{r DE_tumor, warning=F, message=T, eval=!('tumor' %in% de$ttest)} |
|
|
471 |
|
|
|
472 |
# Start timer |
|
|
473 |
t.start <- Sys.time() |
|
|
474 |
|
|
|
475 |
# Define cell groups to compare |
|
|
476 |
ix <- intersect(rownames(obj$dataset3), rownames(obj$dataset2)) %>% |
|
|
477 |
intersect(., rownames(obj$dataset4)) |
|
|
478 |
jx1 <- data.all$proc$Source == names(obj)[3] | data.all$proc$Malignant %in% 'Yes' |
|
|
479 |
jx2 <- data.all$proc$Source == names(obj)[4] |
|
|
480 |
|
|
|
481 |
# DE analysis (t-test) |
|
|
482 |
x <- de$data[ix, jx1]; y <- de$data[ix, jx2] |
|
|
483 |
de$ttest$tumor <- de_analyze(x, y) %>% na.omit |
|
|
484 |
|
|
|
485 |
# DE analysis (MAST) |
|
|
486 |
x <- cbind(de$data[ix, jx1], de$data[ix, jx2]) %>% CreateSeuratObject(.) |
|
|
487 |
Idents(object=x, cells=1:sum(jx1)) <- 'Disease' |
|
|
488 |
Idents(object=x, cells=sum(jx1)+1:ncol(x)) <- 'Control' |
|
|
489 |
de$mast$tumor <- FindMarkers(object=x, ident.1='Disease', ident.2='Control', |
|
|
490 |
test.use='MAST') |
|
|
491 |
|
|
|
492 |
# End timer + log time elapsed |
|
|
493 |
t.end <- Sys.time() |
|
|
494 |
t.end - t.start |
|
|
495 |
|
|
|
496 |
``` |
|
|
497 |
|
|
|
498 |
## Case: disease vs. control (immune cells, bulk) |
|
|
499 |
|
|
|
500 |
Bulk comparison between healthy vs. diseased immune cells. |
|
|
501 |
Estimated runtime: ~20 minutes. |
|
|
502 |
|
|
|
503 |
```{r DE_immune_bulk,warning=F, message=T, eval=!('immune' %in% de$ttest)} |
|
|
504 |
|
|
|
505 |
# Start timer |
|
|
506 |
t.start <- Sys.time() |
|
|
507 |
|
|
|
508 |
# Define cell groups to compare |
|
|
509 |
ix <- intersect(rownames(obj$dataset1), rownames(obj$dataset2)) %>% |
|
|
510 |
intersect(., rownames(obj$dataset5)) |
|
|
511 |
jx1 <- data.all$proc$Source == names(obj)[1] | data.all$proc$Malignant %in% 'No' |
|
|
512 |
jx2 <- data.all$proc$Source == names(obj)[5] |
|
|
513 |
|
|
|
514 |
# DE analysis (t-test) |
|
|
515 |
x <- de$data[ix, jx1]; y <- de$data[ix, jx2] |
|
|
516 |
de$ttest$immune <- de_analyze(x, y) %>% na.omit() |
|
|
517 |
|
|
|
518 |
# DE analysis (MAST) |
|
|
519 |
x <- cbind(de$data[ix, jx1], de$data[ix, jx2]) %>% CreateSeuratObject(.) |
|
|
520 |
Idents(object=x, cells=1:sum(jx1)) <- 'Tumor' |
|
|
521 |
Idents(object=x, cells=sum(jx1)+1:ncol(x)) <- 'Benign' |
|
|
522 |
de$mast$immune <- FindMarkers(object=x, ident.1='Tumor', ident.2='Benign', |
|
|
523 |
test.use='MAST') |
|
|
524 |
|
|
|
525 |
# End timer + log time elapsed |
|
|
526 |
t.end <- Sys.time() |
|
|
527 |
t.end - t.start |
|
|
528 |
|
|
|
529 |
``` |
|
|
530 |
|
|
|
531 |
## Case: disease vs. control (immune cells, cluster-based) |
|
|
532 |
|
|
|
533 |
Immune cell-specific comparisons between healthy vs. diseased cells. |
|
|
534 |
Estimated runtime: ~15 minutes. |
|
|
535 |
|
|
|
536 |
```{r DE_immune_cluster, warning=F, message=T, eval=!('B' %in% de$ttest)} |
|
|
537 |
|
|
|
538 |
# Start timer |
|
|
539 |
t.start <- Sys.time() |
|
|
540 |
|
|
|
541 |
# Define labeled scRNAseq data |
|
|
542 |
lab <- c('Tumor cell', 'Technical error 1', 'Cytotoxic CD8 T cell 1', 'B cell', |
|
|
543 |
'Melanocytes 1', 'Macrophage', 'Cytotoxic CD8 T cell 2', 'Technical error 2', |
|
|
544 |
'Memory T cell', 'Melanocytes 2', 'Dysfunctional CD8 T cell', |
|
|
545 |
'Cytotoxic CD8 T cell 3', '? 1', 'Melanocytes 3', 'Activated cell', |
|
|
546 |
'Exhausted T cell', 'Cytotoxic T cell', '? 2', '? 3', 'Melanocytes 4', '? 4') |
|
|
547 |
names(lab) <- levels(data.all$proc) |
|
|
548 |
plot.data <- data.all$proc %>% RenameIdents(., lab) |
|
|
549 |
|
|
|
550 |
# Iterate through each immune cell group (runtime: ~5 minutes) |
|
|
551 |
immune.cells <- c('B', 'CD8', 'Macrophage', 'Memory', 'Activated') |
|
|
552 |
for (i in 1:length(immune.cells)) { |
|
|
553 |
|
|
|
554 |
# Define row + column indices |
|
|
555 |
ix <- intersect(rownames(obj$dataset1), rownames(obj$dataset2)) %>% |
|
|
556 |
intersect(., rownames(obj$dataset5)) |
|
|
557 |
c <- grepl(immune.cells[i], Idents(plot.data)) |
|
|
558 |
jx1 <- (plot.data$Source == names(obj)[1] | |
|
|
559 |
data.all$proc$Malignant %in% 'No') & c |
|
|
560 |
jx2 <- data.all$proc$Source == names(obj)[5] & c |
|
|
561 |
|
|
|
562 |
# # Print number of genes + cells |
|
|
563 |
# cat(sprintf('No. of genes: %d\tNo. of G1: %d\tNo. of G2: %d\n', |
|
|
564 |
# length(ix), sum(jx1), sum(jx2))) |
|
|
565 |
|
|
|
566 |
# DE analysis (t-test) |
|
|
567 |
x <- de$data[ix, jx1]; y <- de$data[ix, jx2] |
|
|
568 |
de$ttest[[immune.cells[i]]] <- de_analyze(x, y) %>% na.omit() |
|
|
569 |
|
|
|
570 |
# DE analysis (MAST) |
|
|
571 |
x <- cbind(de$data[ix, jx1], de$data[ix, jx2]) %>% CreateSeuratObject(.) |
|
|
572 |
Idents(object=x, cells=1:sum(jx1)) <- 'Tumor' |
|
|
573 |
Idents(object=x, cells=sum(jx1)+1:ncol(x)) <- 'Benign' |
|
|
574 |
de$mast[[immune.cells[i]]] <- FindMarkers(object=x, ident.1='Tumor', |
|
|
575 |
ident.2='Benign', test.use='MAST') |
|
|
576 |
} |
|
|
577 |
|
|
|
578 |
# End timer + log time elapsed |
|
|
579 |
t.end <- Sys.time() |
|
|
580 |
t.end - t.start |
|
|
581 |
|
|
|
582 |
``` |
|
|
583 |
|
|
|
584 |
## Case: responder vs. non-responder (GSE120575) |
|
|
585 |
|
|
|
586 |
Comparison between responder vs. non-responder cells to immunotherapy. |
|
|
587 |
Estimated runtime: ~1 hour. |
|
|
588 |
|
|
|
589 |
```{r DE_response, warning=F, message=T, eval=!('response' %in% de$ttest)} |
|
|
590 |
|
|
|
591 |
# Start timer |
|
|
592 |
t.start <- Sys.time() |
|
|
593 |
|
|
|
594 |
# Define cell groups to compare |
|
|
595 |
ix <- rownames(obj$dataset1) |
|
|
596 |
jx1 <- data.all$proc$Response %in% 'Responder' |
|
|
597 |
jx2 <- data.all$proc$Response %in% 'Non-responder' |
|
|
598 |
|
|
|
599 |
# DE analysis (t-test) |
|
|
600 |
x <- de$data[ix, jx1]; y <- de$data[ix, jx2] |
|
|
601 |
de$ttest$response <- de_analyze(x, y) %>% na.omit |
|
|
602 |
|
|
|
603 |
# DE analysis (MAST) |
|
|
604 |
x <- cbind(de$data[ix, jx1], de$data[ix, jx2]) %>% CreateSeuratObject(.) |
|
|
605 |
Idents(object=x, cells=1:sum(jx1)) <- 'Responder' |
|
|
606 |
Idents(object=x, cells=sum(jx1)+1:ncol(x)) <- 'Non-responder' |
|
|
607 |
de$mast$response <- FindMarkers(object=x, ident.1='Responder', |
|
|
608 |
ident.2='Non-responder', test.use='MAST') |
|
|
609 |
|
|
|
610 |
# End timer + log time elapsed |
|
|
611 |
t.end <- Sys.time() |
|
|
612 |
t.end - t.start |
|
|
613 |
|
|
|
614 |
``` |
|
|
615 |
|
|
|
616 |
## Visualizations |
|
|
617 |
|
|
|
618 |
**Description**: visual inspection of DE analysis results. |
|
|
619 |
|
|
|
620 |
### T-test vs. MAST DEGs |
|
|
621 |
|
|
|
622 |
Visual comparison of DEGs determined with t-test vs. MAST (venn diagrams). |
|
|
623 |
|
|
|
624 |
```{r DE_venn, warning=F, message=T} |
|
|
625 |
|
|
|
626 |
# Compare DEGs b/t the two methods |
|
|
627 |
f <- names(de$mast); p <- list() |
|
|
628 |
for (i in 1:length(f)) { |
|
|
629 |
x <- de$ttest[[f[i]]]; y <- de$mast[[f[i]]] |
|
|
630 |
g <- intersect(x$gene[x$q.val < 0.05], row.names(y)[y$p_val_adj < 0.05]) |
|
|
631 |
# g <- intersect(x$gene[x$q.val < 0.05], y$gene[y$p_val_adj < 0.05]) |
|
|
632 |
cat(sprintf('No. of intersecting DEGs for %s: %d\n', f[i], length(g))) |
|
|
633 |
ggvenn(list('t-test'=x$gene[x$q.val < 0.05], |
|
|
634 |
'MAST'=row.names(y)[y$p_val_adj < 0.05])) + ggtitle(f[i]) |
|
|
635 |
ggsave(paste0('plots/DE_venn_', f[i], '.pdf'), width=5, height=5, units='in') |
|
|
636 |
} |
|
|
637 |
|
|
|
638 |
``` |
|
|
639 |
|
|
|
640 |
### Responder vs. non-responder DEGs |
|
|
641 |
|
|
|
642 |
Clustergram (or heatmap) of DEGs identified for responder vs. non-responder comparison. |
|
|
643 |
|
|
|
644 |
```{r DE_response_heat, warning=F, message=T} |
|
|
645 |
|
|
|
646 |
# Define data to plot |
|
|
647 |
n <- 50 |
|
|
648 |
g <- de$mast$response$gene[1:n] |
|
|
649 |
jx1 <- which(data.all$proc$Response %in% 'Responder')[1:(n/2)] |
|
|
650 |
jx2 <- which(data.all$proc$Response %in% 'Non-responder')[1:(n/2)] |
|
|
651 |
x <- de$data[g, c(jx1, jx2)] %>% as.data.frame(.) |
|
|
652 |
|
|
|
653 |
# Specify heatmap arguments |
|
|
654 |
# color palette |
|
|
655 |
col.pal <- colorRampPalette(colors=c('white', 'red'), space='Lab')(100) |
|
|
656 |
# column annotations (response) |
|
|
657 |
col.annot <- data.frame(Response=rep(c('Responder', 'Non-responder'), each=n/2), |
|
|
658 |
row.names=colnames(x)) |
|
|
659 |
|
|
|
660 |
# Heatmap |
|
|
661 |
p <- pheatmap(x, cluster_rows=T, cluster_cols=F, scale='none', color=col.pal, |
|
|
662 |
annotation_col=col.annot, cellheight=(500/n), cellwidth=(500/n), |
|
|
663 |
show_rownames=T, show_colnames=F, gaps_col=n/2, |
|
|
664 |
main='DEG heatmap (response)') |
|
|
665 |
|
|
|
666 |
# Save plot |
|
|
667 |
tiff('plots/DE_heatmap_response.tiff', units='in', width=11, height=8, res=300) |
|
|
668 |
print({p}); dev.off() |
|
|
669 |
|
|
|
670 |
``` |
|
|
671 |
|
|
|
672 |
PCA of DEGs identified for responder vs. non-responder comparison. |
|
|
673 |
|
|
|
674 |
```{r DE_response_PCA, warning=F, message=T} |
|
|
675 |
|
|
|
676 |
# Define data to plot |
|
|
677 |
g <- de$mast$response$gene[de$mast$response$p_val_adj < 0.05] |
|
|
678 |
jx <- data.all$proc$Response %in% c('Responder', 'Non-responder') |
|
|
679 |
x <- de$data[g, jx] %>% as.data.frame(.) %>% t(.) |
|
|
680 |
m <- data.frame(Response=data.all$proc$Response[jx]) |
|
|
681 |
|
|
|
682 |
# Apply PCA |
|
|
683 |
response_pca <- prcomp(x, scale.=T) |
|
|
684 |
|
|
|
685 |
# Visualize PCA plot |
|
|
686 |
autoplot(response_pca, data=m, colour='Response') + ggtitle('DEG PCA (response)') |
|
|
687 |
|
|
|
688 |
# Save plot |
|
|
689 |
ggsave('plots/DE_PCA_response.tiff', units='in', width=7, height=5, dpi=300) |
|
|
690 |
|
|
|
691 |
``` |
|
|
692 |
|
|
|
693 |
### Tumor vs. benign DEGs |
|
|
694 |
|
|
|
695 |
Clustergram (or heatmap) of DEGs identified for tumor vs. benign comparison. |
|
|
696 |
|
|
|
697 |
```{r DE_tumor_heat, warning=F, message=T} |
|
|
698 |
|
|
|
699 |
# Define data to plot |
|
|
700 |
n <- 50 |
|
|
701 |
g <- de$mast$tumor$gene[1:n] |
|
|
702 |
jx1 <- which(data.all$proc$Source == names(obj)[3] | |
|
|
703 |
data.all$proc$Malignant %in% 'Yes')[1:(n/2)] |
|
|
704 |
jx2 <- which(data.all$proc$Source == names(obj)[4])[1:(n/2)] |
|
|
705 |
x <- de$data[g, c(jx1, jx2)] %>% as.data.frame(.) |
|
|
706 |
|
|
|
707 |
# Specify heatmap arguments |
|
|
708 |
# color palette |
|
|
709 |
col.pal <- colorRampPalette(colors=c('white', 'red'), space='Lab')(100) |
|
|
710 |
# column annotations (response) |
|
|
711 |
col.annot <- data.frame(Malignant=rep(c('Yes', 'No'), each=n/2), |
|
|
712 |
row.names=colnames(x)) |
|
|
713 |
|
|
|
714 |
# Heatmap |
|
|
715 |
p <- pheatmap(x, cluster_rows=T, cluster_cols=F, scale='none', color=col.pal, |
|
|
716 |
annotation_col=col.annot, cellheight=(500/n), cellwidth=(500/n), |
|
|
717 |
show_rownames=T, show_colnames=F, gaps_col=n/2, |
|
|
718 |
main='DEG heatmap (tumor)') |
|
|
719 |
|
|
|
720 |
# Save plot |
|
|
721 |
tiff('plots/DE_heatmap_tumor.tiff', units='in', width=11, height=8, res=300) |
|
|
722 |
print({p}); dev.off() |
|
|
723 |
|
|
|
724 |
``` |
|
|
725 |
|
|
|
726 |
PCA of DEGs identified for tumor vs. benign comparison. |
|
|
727 |
|
|
|
728 |
```{r DE_tumor_PCA, warning=F, message=T} |
|
|
729 |
|
|
|
730 |
# Define data to plot |
|
|
731 |
g <- de$mast$tumor$gene[1:100] |
|
|
732 |
jx1 <- data.all$proc$Source == names(obj)[3] | data.all$proc$Malignant %in% 'Yes' |
|
|
733 |
jx2 <- data.all$proc$Source == names(obj)[4] |
|
|
734 |
x <- cbind(de$data[g, jx1], de$data[g, jx2]) %>% as.data.frame(.) %>% t(.) |
|
|
735 |
m <- data.frame(Malignant=rep(c('Yes', 'No'), c(sum(jx1), sum(jx2)))) |
|
|
736 |
|
|
|
737 |
# Apply PCA |
|
|
738 |
pca.tumor <- prcomp(x, scale.=T) |
|
|
739 |
|
|
|
740 |
# Visualize PCA plot |
|
|
741 |
autoplot(pca.tumor, data=m, colour='Malignant') + ggtitle('DEG PCA (tumor)') |
|
|
742 |
|
|
|
743 |
# Save plot |
|
|
744 |
ggsave('plots/DE_PCA_tumor.tiff', units='in', width=7, height=5, dpi=300) |
|
|
745 |
|
|
|
746 |
``` |
|
|
747 |
|
|
|
748 |
|
|
|
749 |
# 5. Gene set enrichment analysis |
|
|
750 |
|
|
|
751 |
Determine enriched pathways based on the DEG results (from MAST) using [enrichR](https://cran.r-project.org/web/packages/enrichR/vignettes/enrichR.html).. |
|
|
752 |
Total runtime: ~2 minutes. |
|
|
753 |
|
|
|
754 |
```{r GSEA_analysis, warning=F, message=T} |
|
|
755 |
|
|
|
756 |
# Start timer |
|
|
757 |
t.start <- Sys.time() |
|
|
758 |
|
|
|
759 |
# Instantiate GSEA variable |
|
|
760 |
gsea <- list() |
|
|
761 |
|
|
|
762 |
# Ensure comparison to human genes |
|
|
763 |
setEnrichrSite('Enrichr') |
|
|
764 |
|
|
|
765 |
# Select databases to inquire |
|
|
766 |
dbs <- dlg_list(sort(listEnrichrDbs()$libraryName), multiple=T)$res |
|
|
767 |
|
|
|
768 |
# Loop through all DE fields |
|
|
769 |
f <- names(de$mast) |
|
|
770 |
for (i in 1:length(f)) { |
|
|
771 |
x <- de$mast[[f[i]]] |
|
|
772 |
y <- enrichr(x$gene[x$p_val_adj < 0.05], dbs) |
|
|
773 |
z <- y$GO_Biological_Process_2021 |
|
|
774 |
n <- sum(z$Adjusted.P.value < 0.05) |
|
|
775 |
gsea[[f[i]]] <- z[z$Adjusted.P.value < 0.05, ] |
|
|
776 |
cat(sprintf('No. of enriched pathways for %s: %d\n', f[i], n)) |
|
|
777 |
plotEnrich(z, orderBy='Adjusted.P.value') + |
|
|
778 |
ggtitle(sprintf('Case: %s (Total = %d)', f[i], n)) |
|
|
779 |
ggsave(paste0('plots/GSEA_', f[i], '.pdf'), width=7, height=5, units='in') |
|
|
780 |
} |
|
|
781 |
|
|
|
782 |
# End timer + log time elapsed |
|
|
783 |
t.end <- Sys.time() |
|
|
784 |
t.end - t.start |
|
|
785 |
|
|
|
786 |
``` |
|
|
787 |
|
|
|
788 |
Visualize intersecting pathways between comparisons. |
|
|
789 |
|
|
|
790 |
```{r GSEA_intersect, warning=F, message=T} |
|
|
791 |
|
|
|
792 |
# Define plots data |
|
|
793 |
df <- list('tumor'=gsea$tumor$Term, |
|
|
794 |
'immune'=gsea$immune$Term, |
|
|
795 |
'B'=gsea$B$Term, |
|
|
796 |
'CD8'=gsea$CD8$Term, |
|
|
797 |
'Macrophage'=gsea$Macrophage$Term, |
|
|
798 |
'Memory'=gsea$Memory$Term, |
|
|
799 |
'Activated T'=gsea$Activated$Term, |
|
|
800 |
'response'=gsea$response$Term) |
|
|
801 |
|
|
|
802 |
# Generate and save UpSet plot |
|
|
803 |
pdf(file='plots/GSEA_intersect.pdf', width=11, height=8) |
|
|
804 |
upset(fromList(df), sets=names(df), order.by='freq') |
|
|
805 |
|
|
|
806 |
``` |
|
|
807 |
|
|
|
808 |
|
|
|
809 |
# 6. Cell classification using Random Forests |
|
|
810 |
|
|
|
811 |
Apply Random Forests to construct a cell type classifier using [SingleCellNet](https://github.com/pcahan1/singleCellNet). |
|
|
812 |
|
|
|
813 |
Define training + testing data. |
|
|
814 |
|
|
|
815 |
```{r ML_train_test, warning=F, message=T} |
|
|
816 |
|
|
|
817 |
# Pull required data |
|
|
818 |
s <- extractSeurat(data.all$proc, exp_slot_name='counts') |
|
|
819 |
rm(data.all); gc() |
|
|
820 |
st <- s$sampTab %>% mutate(ID=rownames(.)) |
|
|
821 |
exp <- s$expDat %>% as(., 'dgCMatrix') |
|
|
822 |
|
|
|
823 |
# Define label field |
|
|
824 |
label <- dlg_list(title='Choose label: ', sort(colnames(st)), multiple=F)$res |
|
|
825 |
ID <- dlg_list(title='Choose cell ID: ', sort(colnames(st)), multiple=F)$res |
|
|
826 |
|
|
|
827 |
# Re-order by label field |
|
|
828 |
ix <- order(st[[label]]) |
|
|
829 |
st <- st[ix, ] |
|
|
830 |
exp <- exp[, ix] |
|
|
831 |
|
|
|
832 |
# Train/Test split |
|
|
833 |
stList1 <- splitCommon(sampTab=st, ncells=100, dLevel=label) |
|
|
834 |
stTrain <- stList1[[1]] |
|
|
835 |
expTrain <- exp[, rownames(stTrain)] |
|
|
836 |
stList2 <- splitCommon(sampTab=stList1[[2]], ncells=100, dLevel=label) |
|
|
837 |
stTest <- stList2[[1]] |
|
|
838 |
expTest <- exp[, rownames(stTest)] |
|
|
839 |
|
|
|
840 |
``` |
|
|
841 |
|
|
|
842 |
Apply SCN (runtime: ~5 minutes). |
|
|
843 |
|
|
|
844 |
```{r SCN, warning=F, message=T} |
|
|
845 |
|
|
|
846 |
# Start timer |
|
|
847 |
t.start <- Sys.time() |
|
|
848 |
|
|
|
849 |
# Train model |
|
|
850 |
x <- scn_train(stTrain=stTrain, expTrain=expTrain, nTopGenes=10, nRand=70, |
|
|
851 |
nTrees=1000, nTopGenePairs=25, dLevel=label) |
|
|
852 |
|
|
|
853 |
# Test model |
|
|
854 |
y <- scn_predict(cnProc=x[['cnProc']], expDat=expTest, nrand=50) |
|
|
855 |
|
|
|
856 |
# End timer + log time elapsed |
|
|
857 |
t.end <- Sys.time() |
|
|
858 |
t.end - t.start |
|
|
859 |
|
|
|
860 |
``` |
|
|
861 |
|
|
|
862 |
Model assessment and visualization of results. |
|
|
863 |
|
|
|
864 |
```{r ML_evaluation, warning=F, message=F} |
|
|
865 |
|
|
|
866 |
# Assess model |
|
|
867 |
z <- assess_comm(ct_scores=y, stTrain=stTrain, stQuery=stTest, dLevelSID=ID, |
|
|
868 |
classTrain=label, classQuery=label) |
|
|
869 |
plot_PRs(z) + ggtitle('Model performance (test set)') |
|
|
870 |
if (save.plots) { |
|
|
871 |
ggsave('plots/ML_performance.pdf', width=5, height=5, units='in') |
|
|
872 |
} |
|
|
873 |
|
|
|
874 |
# Visualize results |
|
|
875 |
# classification results |
|
|
876 |
nrand <- 50 |
|
|
877 |
sla <- as.vector(stTest[[label]]) |
|
|
878 |
names(sla) <- as.vector(rownames(stTest)) |
|
|
879 |
slaRand <- rep('rand', nrand) |
|
|
880 |
names(slaRand) <- paste('rand_', 1:nrand, sep='') |
|
|
881 |
sla <- append(sla, slaRand) |
|
|
882 |
p <- sc_hmClass(classMat=y, grps=sla, max=300, isBig=T) |
|
|
883 |
if (save.plots) { |
|
|
884 |
pdf('plots/ML_classification.pdf', width=7, height=5, |
|
|
885 |
title='Classification results (test set)') |
|
|
886 |
p |
|
|
887 |
} |
|
|
888 |
# attribution plot |
|
|
889 |
plot_attr(classRes=y, sampTab=stTest, nrand=nrand, sid=ID, dLevel=label) + |
|
|
890 |
xlab('Predicted group') + ylab('True class ratio') + |
|
|
891 |
ggtitle('Attribution plot (test set)') |
|
|
892 |
if (save.plots) { |
|
|
893 |
ggsave('plots/ML_attribution.pdf', width=7, height=5, units='in') |
|
|
894 |
} |
|
|
895 |
|
|
|
896 |
``` |
|
|
897 |
|
|
|
898 |
|
|
|
899 |
# 7. Output saving (if prompted) |
|
|
900 |
|
|
|
901 |
```{r save_outputs, warning=F, message=T} |
|
|
902 |
|
|
|
903 |
# Save outputs |
|
|
904 |
save.data <- dlgInput('Save all results? (T/F)', F)$res %>% as.logical(.) |
|
|
905 |
if (save.data) { |
|
|
906 |
# Biomarker results |
|
|
907 |
xl.list <- list('biomarkers'=data.all$bm) |
|
|
908 |
write.xlsx(xl.list, 'results/biomarkers.xlsx', row.names=F) |
|
|
909 |
# DEG results |
|
|
910 |
write.xlsx(de$ttest, 'results/DE_ttest.xlsx', row.names=F) |
|
|
911 |
write.xlsx(de$mast, 'results/DE_MAST.xlsx', row.names=T) |
|
|
912 |
# GSEA results |
|
|
913 |
write.xlsx(gsea, 'results/GSEA.xlsx', row.names=F) |
|
|
914 |
} |
|
|
915 |
|
|
|
916 |
# Save workspace |
|
|
917 |
save.wksp <- dlgInput('Save R workspace? (T/F)', F)$res %>% as.logical(.) |
|
|
918 |
if (save.wksp) { |
|
|
919 |
# Save workspace (runtime: ~2 hours) |
|
|
920 |
save.image(file='scRNAseq_wksp.RData') |
|
|
921 |
} |
|
|
922 |
|
|
|
923 |
# Save project state (for reproducibility) |
|
|
924 |
renv::snapshot() |
|
|
925 |
|
|
|
926 |
``` |
|
|
927 |
|
|
|
928 |
# Visualize data |
|
|
929 |
|
|
|
930 |
```{r visualize_data, warning=F, message=F, fig.width=12, fig.height=6} |
|
|
931 |
|
|
|
932 |
# Create UMAP plots |
|
|
933 |
p1 <- DimPlot(data.all$proc, reduction='umap', group.by='Source', |
|
|
934 |
label=T, repel=T) + |
|
|
935 |
ggtitle('Dataset Source') |
|
|
936 |
|
|
|
937 |
p2 <- DimPlot(data.all$proc, reduction='harmony', group.by='Source', |
|
|
938 |
label=T, repel=T) + |
|
|
939 |
ggtitle('Dataset Source (Harmony)') |
|
|
940 |
|
|
|
941 |
# Combine plots |
|
|
942 |
p1 + p2 |
|
|
943 |
|
|
|
944 |
# Save plot |
|
|
945 |
ggsave('plots/UMAP_integration.pdf', width=12, height=6) |
|
|
946 |
|
|
|
947 |
``` |
|
|
948 |
|
|
|
949 |
# Visualize tumor vs melanocyte comparison |
|
|
950 |
|
|
|
951 |
```{r visualize_tumor, warning=F, message=F, fig.width=12, fig.height=6} |
|
|
952 |
|
|
|
953 |
# Create volcano plot |
|
|
954 |
p1 <- EnhancedVolcano(tumor.vs.melanocyte, |
|
|
955 |
lab=rownames(tumor.vs.melanocyte), |
|
|
956 |
x='avg_log2FC', y='p_val_adj', |
|
|
957 |
pCutoff=0.05, FCcutoff=1, |
|
|
958 |
title='Tumor vs Melanocyte DEGs') |
|
|
959 |
|
|
|
960 |
# Create heatmap |
|
|
961 |
top.genes <- rownames(tumor.vs.melanocyte)[tumor.vs.melanocyte$p_val_adj < 0.05] |
|
|
962 |
top.genes <- top.genes[order(abs(tumor.vs.melanocyte$avg_log2FC[ |
|
|
963 |
tumor.vs.melanocyte$p_val_adj < 0.05]), decreasing=T)][1:50] |
|
|
964 |
|
|
|
965 |
plot.data <- subset(data.all$proc, |
|
|
966 |
subset=Source %in% c(names(obj)[3:4])) |
|
|
967 |
plot.data <- ScaleData(plot.data, features=top.genes) |
|
|
968 |
|
|
|
969 |
p2 <- DoHeatmap(plot.data, features=top.genes, |
|
|
970 |
group.by='Source') + |
|
|
971 |
ggtitle('Top 50 Tumor vs Melanocyte DEGs') |
|
|
972 |
|
|
|
973 |
# Combine plots |
|
|
974 |
p1 + p2 |
|
|
975 |
|
|
|
976 |
# Save plot |
|
|
977 |
ggsave('plots/tumor_vs_melanocyte.pdf', width=12, height=6) |
|
|
978 |
|
|
|
979 |
``` |
|
|
980 |
|
|
|
981 |
# Visualize immune vs non-malignant comparison |
|
|
982 |
|
|
|
983 |
```{r visualize_immune, warning=F, message=F, fig.width=12, fig.height=6} |
|
|
984 |
|
|
|
985 |
# Create volcano plot |
|
|
986 |
p1 <- EnhancedVolcano(immune.vs.nonmalignant, |
|
|
987 |
lab=rownames(immune.vs.nonmalignant), |
|
|
988 |
x='avg_log2FC', y='p_val_adj', |
|
|
989 |
pCutoff=0.05, FCcutoff=1, |
|
|
990 |
title='Immune vs Non-malignant DEGs') |
|
|
991 |
|
|
|
992 |
# Create heatmap |
|
|
993 |
top.genes <- rownames(immune.vs.nonmalignant)[ |
|
|
994 |
immune.vs.nonmalignant$p_val_adj < 0.05] |
|
|
995 |
top.genes <- top.genes[order(abs(immune.vs.nonmalignant$avg_log2FC[ |
|
|
996 |
immune.vs.nonmalignant$p_val_adj < 0.05]), decreasing=T)][1:50] |
|
|
997 |
|
|
|
998 |
plot.data <- subset(data.all$proc, |
|
|
999 |
subset=Source %in% c(names(obj)[c(1,2,5)])) |
|
|
1000 |
plot.data <- ScaleData(plot.data, features=top.genes) |
|
|
1001 |
|
|
|
1002 |
p2 <- DoHeatmap(plot.data, features=top.genes, |
|
|
1003 |
group.by='Source') + |
|
|
1004 |
ggtitle('Top 50 Immune vs Non-malignant DEGs') |
|
|
1005 |
|
|
|
1006 |
# Combine plots |
|
|
1007 |
p1 + p2 |
|
|
1008 |
|
|
|
1009 |
# Save plot |
|
|
1010 |
ggsave('plots/immune_vs_nonmalignant.pdf', width=12, height=6) |
|
|
1011 |
|
|
|
1012 |
``` |
|
|
1013 |
|
|
|
1014 |
# Visualize immune cell type comparisons |
|
|
1015 |
|
|
|
1016 |
```{r visualize_immune_types, warning=F, message=F, fig.width=12, fig.height=6} |
|
|
1017 |
|
|
|
1018 |
# Create plots for each cell type |
|
|
1019 |
for (i in 1:length(immune.cells)) { |
|
|
1020 |
# Read results |
|
|
1021 |
immune.cell.type <- read.csv(paste0('results/', |
|
|
1022 |
immune.cells[i], |
|
|
1023 |
'_cell_DEGs.csv')) |
|
|
1024 |
|
|
|
1025 |
# Create volcano plot |
|
|
1026 |
p1 <- EnhancedVolcano(immune.cell.type, |
|
|
1027 |
lab=rownames(immune.cell.type), |
|
|
1028 |
x='avg_log2FC', y='p_val_adj', |
|
|
1029 |
pCutoff=0.05, FCcutoff=1, |
|
|
1030 |
title=paste0(immune.cells[i], ' Cell DEGs')) |
|
|
1031 |
|
|
|
1032 |
# Create heatmap |
|
|
1033 |
top.genes <- rownames(immune.cell.type)[immune.cell.type$p_val_adj < 0.05] |
|
|
1034 |
top.genes <- top.genes[order(abs(immune.cell.type$avg_log2FC[ |
|
|
1035 |
immune.cell.type$p_val_adj < 0.05]), decreasing=T)][1:50] |
|
|
1036 |
|
|
|
1037 |
plot.data <- subset(data.all$proc, |
|
|
1038 |
subset=Source %in% c(names(obj)[c(1:3,5)])) |
|
|
1039 |
plot.data <- ScaleData(plot.data, features=top.genes) |
|
|
1040 |
|
|
|
1041 |
p2 <- DoHeatmap(plot.data, features=top.genes, |
|
|
1042 |
group.by='Source') + |
|
|
1043 |
ggtitle(paste0('Top 50 ', immune.cells[i], ' Cell DEGs')) |
|
|
1044 |
|
|
|
1045 |
# Combine plots |
|
|
1046 |
p <- p1 + p2 |
|
|
1047 |
|
|
|
1048 |
# Save plot |
|
|
1049 |
ggsave(paste0('plots/', immune.cells[i], '_cell_DEGs.pdf'), |
|
|
1050 |
plot=p, width=12, height=6) |
|
|
1051 |
} |
|
|
1052 |
|
|
|
1053 |
``` |
|
|
1054 |
|
|
|
1055 |
# Visualize responder vs non-responder comparison |
|
|
1056 |
|
|
|
1057 |
```{r visualize_response, warning=F, message=F, fig.width=12, fig.height=6} |
|
|
1058 |
|
|
|
1059 |
# Create volcano plot |
|
|
1060 |
p1 <- EnhancedVolcano(response.vs.nonresponse, |
|
|
1061 |
lab=rownames(response.vs.nonresponse), |
|
|
1062 |
x='avg_log2FC', y='p_val_adj', |
|
|
1063 |
pCutoff=0.05, FCcutoff=1, |
|
|
1064 |
title='Response vs Non-response DEGs') |
|
|
1065 |
|
|
|
1066 |
# Create heatmap |
|
|
1067 |
top.genes <- rownames(response.vs.nonresponse)[ |
|
|
1068 |
response.vs.nonresponse$p_val_adj < 0.05] |
|
|
1069 |
top.genes <- top.genes[order(abs(response.vs.nonresponse$avg_log2FC[ |
|
|
1070 |
response.vs.nonresponse$p_val_adj < 0.05]), decreasing=T)][1:50] |
|
|
1071 |
|
|
|
1072 |
plot.data <- subset(data.all$proc, |
|
|
1073 |
subset=Source %in% names(obj)[1]) |
|
|
1074 |
plot.data <- ScaleData(plot.data, features=top.genes) |
|
|
1075 |
|
|
|
1076 |
p2 <- DoHeatmap(plot.data, features=top.genes, |
|
|
1077 |
group.by='Response') + |
|
|
1078 |
ggtitle('Top 50 Response vs Non-response DEGs') |
|
|
1079 |
|
|
|
1080 |
# Combine plots |
|
|
1081 |
p1 + p2 |
|
|
1082 |
|
|
|
1083 |
# Save plot |
|
|
1084 |
ggsave('plots/response_vs_nonresponse.pdf', width=12, height=6) |
|
|
1085 |
|
|
|
1086 |
``` |