[6df130]: / notebooks / ML_modeling.Rmd

Download this file

184 lines (136 with data), 4.9 kB

---
title: "ML modeling of scRNA-seq data"
date: "Last modified: `r format(Sys.time(), '%B %d, %Y')`"
tags: [scRNA-seq, seurat, melanoma, immunotherapy, PBMCs] 
output:
  html_document:
    theme: flatly
    highlight: zenburn
    toc: true
    number_sections: false
    toc_depth: 2
    toc_float:
      collapsed: false
      smooth_scroll: true
    code_folding: hide
    self_contained: yes
---

# Notebook Description

This notebook compiles the code and outputs for ML application onto the scRNA-seq data on melanoma and immunotherapy. Here we specifically construct a Random Forest classifier using an scRNA-seq method called [SingleCellNet](https://github.com/pcahan1/singleCellNet).  

# Initialize environment

Install required packages.

```{r install_packages}

# Define packages to install
pkg.list = c('svDialogs', 'dplyr', 'Seurat', 'ggplot2', 'singleCellNet')

# Define packages not already installed
pkg.install <- pkg.list[!(pkg.list %in% installed.packages()[, 'Package'])]

# Install SingleCellNet (SCN)
if ('singleCellNet' %in% pkg.install) {
  install.packages("devtools")
  devtools::install_github("pcahan1/singleCellNet")
  pkg.install <- pkg.install[!('singleCellNet' %in% pkg.install)]
}

# Install uninstalled packages
if (length(pkg.install) > 0) {
  install.packages(pkg.install)
}

```

Load installed packages.  

```{r load_packages, results="hide", message=F, warning=F, error=F}

# Load packages
library(svDialogs)     # for prompting user-input
library(dplyr)         # for data processing
library(Seurat)        # to use Seurat functions
library(ggplot2)       # for data visualization
library(singleCellNet) # for RF implementation

```

Additional settings.  

```{r settings}

# Adjust system settings
Sys.setenv("VROOM_CONNECTION_SIZE" = 131072 * 2)

# Save plots? (default: F)
save.plots <- dlgInput('Save all outputs? (T/F)', F)$res

# Set seed
set.seed(123)

```

# ML modeling

**Description**: construct, train, and evaluate the four models described above.    

Total runtime: ~2 minutes.  

Load data

```{r load_data, warning=F, message=T}

# Load data
f <- list.files()
if (any(endsWith(f, '.RData'))) {
  load(f[endsWith(f, '.RData')][1])
}

# Remove unnecessary variables
rm(d, de, obj, p, p.data, xl.list, x, y, dot.feat, f, immune.cells, ix, jx1, jx2, 
   lab, ridge.feat, save.data, save.outputs, save.wksp, de_analyze, qc_filter)
gc()

```

Define training + testing data. 

```{r train_test, warning=F, message=T}

# Pull required data
s <- extractSeurat(data.all$proc, exp_slot_name='counts')
rm(data.all); gc()
st <- s$sampTab %>% mutate(ID=rownames(.))
exp <- s$expDat %>% as(., 'dgCMatrix')

# Define label field
label <- dlg_list(title='Choose label: ', sort(colnames(st)), multiple=F)$res
ID <- dlg_list(title='Choose cell ID: ', sort(colnames(st)), multiple=F)$res

# Re-order by label field
ix <- order(st[[label]])
st <- st[ix, ]
exp <- exp[, ix]

# Train/Test split
stList1 <- splitCommon(sampTab=st, ncells=100, dLevel=label)
stTrain <- stList1[[1]]
expTrain <- exp[, rownames(stTrain)]
stList2 <- splitCommon(sampTab=stList1[[2]], ncells=100, dLevel=label)
stTest <- stList2[[1]]
expTest <- exp[, rownames(stTest)]

```

Apply SCN (runtime: ~5 minutes). 

```{r SCN, warning=F, message=T}

# Start timer
t.start <- Sys.time()

# Train model
x <- scn_train(stTrain=stTrain, expTrain=expTrain, nTopGenes=10, nRand=70, 
               nTrees=1000, nTopGenePairs=25, dLevel=label)

# Test model
y <- scn_predict(cnProc=x[['cnProc']], expDat=expTest, nrand=50)

# End timer + log time elapsed
t.end <- Sys.time()
t.end - t.start

```

Assessment + visualization.  

```{r evaluation, warning=F, message=F}

# Assess model
z <- assess_comm(ct_scores=y, stTrain=stTrain, stQuery=stTest, dLevelSID=ID,
                 classTrain=label, classQuery=label)
plot_PRs(z) + ggtitle('Model performance (test set)')
if (save.plots) {
  ggsave('plots/ML_performance.pdf', width=5, height=5, units='in')
}

# Visualize results
#   classification results
nrand <- 50
sla <- as.vector(stTest[[label]])
names(sla) <- as.vector(rownames(stTest))
slaRand <- rep('rand', nrand)
names(slaRand) <- paste('rand_', 1:nrand, sep='')
sla <- append(sla, slaRand)
p <- sc_hmClass(classMat=y, grps=sla, max=300, isBig=T)
if (save.plots) {
  pdf('plots/ML_classification.pdf', width=7, height=5,
      title='Classification results (test set)')
  p
}
#   attribution plot
plot_attr(classRes=y, sampTab=stTest, nrand=nrand, sid=ID, dLevel=label) + 
  xlab('Predicted group') + ylab('True class ratio') + 
  ggtitle('Attribution plot (test set)')
if (save.plots) {
  ggsave('plots/ML_attribution.pdf', width=7, height=5, units='in')
}

```