[d84c2d]: / man / volcano_ic.Rd

Download this file

59 lines (52 with data), 1.8 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plots.R
\name{volcano_ic}
\alias{volcano_ic}
\title{Volcano plot for class biotmle}
\usage{
volcano_ic(biotmle, ate_bound = 1, pval_bound = 0.2)
}
\arguments{
\item{biotmle}{object of class \code{biotmle} as produced by an appropriate
call to \code{biomarkertmle}}
\item{ate_bound}{A \code{numeric} indicating the highest magnitude of the
average treatment effect to be colored on the x-axis of the volcano plot;
this limits the observations to be considered differentially expressed to
those in a user-specified interval.}
\item{pval_bound}{A \code{numeric} indicating the largest corrected p-value
to be colored on the y-axis of the volcano plot; this limits observations
considered as differentially expressed to those in a user-specified
interval.}
}
\value{
object of class \code{ggplot} containing a standard volcano plot of
the log-fold change in the causal target parameter against the raw log
p-value computed from the moderated tests in \code{modtest_ic}.
}
\description{
Volcano plot of the log-changes in the target causal paramter against the
log raw p-values from the moderated t-test.
}
\examples{
\dontrun{
library(dplyr)
library(biotmleData)
library(SuperLearner)
library(SummarizedExperiment)
data(illuminaData)
colData(illuminaData) <- colData(illuminaData) \%>\%
data.frame() \%>\%
mutate(age = as.numeric(age > median(age))) \%>\%
DataFrame()
benz_idx <- which(names(colData(illuminaData)) \%in\% "benzene")
biomarkerTMLEout <- biomarkertmle(
se = illuminaData,
varInt = benz_idx,
bppar_type = BiocParallel::SerialParam(),
g_lib = c("SL.mean", "SL.glm"),
Q_lib = c("SL.mean", "SL.glm")
)
limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout)
volcano_ic(biotmle = limmaTMLEout)
}
}