Switch to unified view

a/README.md b/README.md
1
1
2
<!-- README.md is generated from README.Rmd. Please edit that file -->
2
3
3
# R/`biotmle`
4
# R/`biotmle`
4
5
5
[![R-CMD-check](https://github.com/nhejazi/biotmle/workflows/R-CMD-check/badge.svg)](https://github.com/nhejazi/biotmle/actions)
6
[![R-CMD-check](https://github.com/nhejazi/biotmle/workflows/R-CMD-check/badge.svg)](https://github.com/nhejazi/biotmle/actions)
6
[![Coverage Status](https://img.shields.io/codecov/c/github/nhejazi/biotmle/master.svg)](https://codecov.io/github/nhejazi/biotmle?branch=master)
7
[![Coverage
7
[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active)
8
Status](https://img.shields.io/codecov/c/github/nhejazi/biotmle/master.svg)](https://codecov.io/github/nhejazi/biotmle?branch=master)
8
[![BioC status](http://www.bioconductor.org/shields/build/release/bioc/biotmle.svg)](https://bioconductor.org/checkResults/release/bioc-LATEST/biotmle)
9
[![Project Status: Active – The project has reached a stable, usable
9
[![Bioc Time](http://bioconductor.org/shields/years-in-bioc/biotmle.svg)](https://bioconductor.org/packages/release/bioc/html/biotmle.html)
10
state and is being actively
10
[![Bioc Downloads](http://bioconductor.org/shields/downloads/biotmle.svg)](https://bioconductor.org/packages/release/bioc/html/biotmle.html)
11
developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active)
11
[![MIT license](http://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)
12
[![BioC
12
[![DOI](https://zenodo.org/badge/65854775.svg)](https://zenodo.org/badge/latestdoi/65854775)
13
status](http://www.bioconductor.org/shields/build/release/bioc/biotmle.svg)](https://bioconductor.org/checkResults/release/bioc-LATEST/biotmle)
13
[![JOSS Status](http://joss.theoj.org/papers/02be843d9bab1b598187bfbb08ce3949/status.svg)](http://joss.theoj.org/papers/02be843d9bab1b598187bfbb08ce3949)
14
[![Bioc
14
15
Time](http://bioconductor.org/shields/years-in-bioc/biotmle.svg)](https://bioconductor.org/packages/release/bioc/html/biotmle.html)
15
 Targeted Learning with Moderated Statistics for Biomarker Discovery
16
[![Bioc
16
17
Downloads](http://bioconductor.org/shields/downloads/biotmle.svg)](https://bioconductor.org/packages/release/bioc/html/biotmle.html)
17
__Authors:__ [Nima Hejazi](https://nimahejazi.org), [Mark van der
18
[![MIT
18
Laan](https://vanderlaan-lab.org/about), and [Alan
19
license](http://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)
19
Hubbard](https://hubbard.berkeley.edu)
20
[![DOI](https://zenodo.org/badge/65854775.svg)](https://zenodo.org/badge/latestdoi/65854775)
20
21
[![JOSS
21
---
22
Status](http://joss.theoj.org/papers/02be843d9bab1b598187bfbb08ce3949/status.svg)](http://joss.theoj.org/papers/02be843d9bab1b598187bfbb08ce3949)
22
23
23
## What's `biotmle`?
24
> Targeted Learning with Moderated Statistics for Biomarker Discovery
24
25
25
The `biotmle` R package facilitates biomarker discovery through a generalization
26
**Authors:** [Nima Hejazi](https://nimahejazi.org), [Mark van der
26
of the moderated t-statistic [@smyth2004linear] that extends the procedure to
27
Laan](https://vanderlaan-lab.org/about), and [Alan
27
locally efficient estimators of asymptotically linear target parameters
28
Hubbard](https://hubbard.berkeley.edu)
28
[@tsiatis2007semiparametric]. The set of methods implemented modify targeted
29
29
maximum likelihood (TML) estimators of statistical (or causal) target parameters
30
-----
30
(e.g., average treatment effect) to apply variance moderation to the standard
31
31
variance estimator based on the efficient influence function (EIF) of the target
32
## What’s `biotmle`?
32
parameter [@vdl2011targeted; @vdl2018targeted]. By performing a moderated
33
33
hypothesis test that pools the individual probe-specific EIF-based variance
34
The `biotmle` R package facilitates biomarker discovery through a
34
estimates, a robust variance estimator is constructed, which stabilizes the
35
generalization of the moderated t-statistic (Smyth 2004) that extends
35
standard error estimates and improves the performance of such estimators both in
36
the procedure to locally efficient estimators of asymptotically linear
36
smaller samples and in settings where the EIF is poorly estimated. The resultant
37
target parameters (Tsiatis 2007). The set of methods implemented modify
37
procedure allows for the construction of conservative hypothesis tests that
38
targeted maximum likelihood (TML) estimators of statistical (or causal)
38
reduce the false discovery rate and/or the family-wise error rate
39
target parameters (e.g., average treatment effect) to apply variance
39
[@hejazi2021generalization]. Improvements upon prior TML-based approaches to
40
moderation to the standard variance estimator based on the efficient
40
biomarker discovery (e.g., @bembom2009biomarker) include both the moderated
41
influence function (EIF) of the target parameter (van der Laan and Rose
41
variance estimator as well as the use of conservative reference distributions
42
2011, 2018). By performing a moderated hypothesis test that pools the
42
for the corresponding moderated test statistics (e.g., logistic distribution),
43
individual probe-specific EIF-based variance estimates, a robust
43
inspired by tail bounds based on concentration
44
variance estimator is constructed, which stabilizes the standard error
44
inequalities [@rosenblum2009confidence]; the latter prove critical for obtaining
45
estimates and improves the performance of such estimators both in
45
robust inference when the finite-sample distribution of the estimator deviates
46
smaller samples and in settings where the EIF is poorly estimated. The
46
from normality.
47
resultant procedure allows for the construction of conservative
47
48
hypothesis tests that reduce the false discovery rate and/or the
48
---
49
family-wise error rate (Hejazi, van der Laan, and Hubbard 2021).
49
50
Improvements upon prior TML-based approaches to biomarker discovery
50
## Installation
51
(e.g., Bembom et al. (2009)) include both the moderated variance
51
52
estimator as well as the use of conservative reference distributions for
52
For standard use, install from
53
the corresponding moderated test statistics (e.g., logistic
53
[Bioconductor](https://bioconductor.org/packages/biotmle) using
54
distribution), inspired by tail bounds based on concentration
54
[`BiocManager`](https://CRAN.R-project.org/package=BiocManager):
55
inequalities (Rosenblum and van der Laan 2009); the latter prove
55
56
critical for obtaining robust inference when the finite-sample
56
```{r bioc-installation, eval = FALSE}
57
distribution of the estimator deviates from normality.
57
if (!requireNamespace("BiocManager", quietly=TRUE)) {
58
58
  install.packages("BiocManager")
59
-----
59
}
60
60
BiocManager::install("biotmle")
61
## Installation
61
```
62
62
63
For standard use, install from
63
To contribute, install the bleeding-edge _development version_ from GitHub via
64
[Bioconductor](https://bioconductor.org/packages/biotmle) using
64
[`remotes`](https://CRAN.R-project.org/package=remotes):
65
[`BiocManager`](https://CRAN.R-project.org/package=BiocManager):
65
66
66
```{r gh-master-installation, eval = FALSE}
67
``` r
67
remotes::install_github("nhejazi/biotmle")
68
if (!requireNamespace("BiocManager", quietly=TRUE)) {
68
```
69
  install.packages("BiocManager")
69
70
}
70
Current and prior [Bioconductor](https://bioconductor.org) releases are
71
BiocManager::install("biotmle")
71
available under branches with numbers prefixed by "RELEASE_". For example, to
72
```
72
install the version of this package available via Bioconductor 3.6, use
73
73
74
To contribute, install the bleeding-edge *development version* from
74
```{r gh-develop-installation, eval = FALSE}
75
GitHub via [`remotes`](https://CRAN.R-project.org/package=remotes):
75
remotes::install_github("nhejazi/biotmle", ref = "RELEASE_3_6")
76
76
```
77
``` r
77
78
remotes::install_github("nhejazi/biotmle")
78
---
79
```
79
80
80
## Example
81
Current and prior [Bioconductor](https://bioconductor.org) releases are
81
82
available under branches with numbers prefixed by “RELEASE\_”. For
82
For details on how to best use the `biotmle` R package, please consult the most
83
example, to install the version of this package available via
83
recent [package
84
Bioconductor 3.6, use
84
vignette](https://bioconductor.org/packages/release/bioc/vignettes/biotmle/inst/doc/exposureBiomarkers.html)
85
85
available through the [Bioconductor
86
``` r
86
project](https://bioconductor.org/packages/biotmle).
87
remotes::install_github("nhejazi/biotmle", ref = "RELEASE_3_6")
87
88
```
88
---
89
89
90
-----
90
## Issues
91
91
92
## Example
92
If you encounter any bugs or have any specific feature requests, please [file an
93
93
issue](https://github.com/nhejazi/biotmle/issues).
94
For details on how to best use the `biotmle` R package, please consult
94
95
the most recent [package
95
---
96
vignette](https://bioconductor.org/packages/release/bioc/vignettes/biotmle/inst/doc/exposureBiomarkers.html)
96
97
available through the [Bioconductor
97
## Contributions
98
project](https://bioconductor.org/packages/biotmle).
98
99
99
Contributions are very welcome. Interested contributors should consult our
100
-----
100
[contribution
101
101
guidelines](https://github.com/nhejazi/biotmle/blob/master/CONTRIBUTING.md)
102
## Issues
102
prior to submitting a pull request.
103
103
104
If you encounter any bugs or have any specific feature requests, please
104
---
105
[file an issue](https://github.com/nhejazi/biotmle/issues).
105
106
106
## Citation
107
-----
107
108
108
After using the `biotmle` R package, please cite both of the following:
109
## Contributions
109
110
110
        @article{hejazi2017biotmle,
111
Contributions are very welcome. Interested contributors should consult
111
          author = {Hejazi, Nima S and Cai, Weixin and Hubbard, Alan E},
112
our [contribution
112
          title = {biotmle: Targeted Learning for Biomarker Discovery},
113
guidelines](https://github.com/nhejazi/biotmle/blob/master/CONTRIBUTING.md)
113
          journal = {The Journal of Open Source Software},
114
prior to submitting a pull request.
114
          volume = {2},
115
115
          number = {15},
116
-----
116
          month = {July},
117
117
          year  = {2017},
118
## Citation
118
          publisher = {The Open Journal},
119
119
          doi = {10.21105/joss.00295},
120
After using the `biotmle` R package, please cite both of the following:
120
          url = {https://doi.org/10.21105/joss.00295}
121
121
        }
122
``` 
122
123
    @article{hejazi2017biotmle,
123
        @article{hejazi2021generalization,
124
      author = {Hejazi, Nima S and Cai, Weixin and Hubbard, Alan E},
124
          author = {Hejazi, Nima S and Boileau, Philippe and {van der Laan},
125
      title = {biotmle: Targeted Learning for Biomarker Discovery},
125
            Mark J and Hubbard, Alan E},
126
      journal = {The Journal of Open Source Software},
126
          title = {A generalization of moderated statistics to data adaptive
127
      volume = {2},
127
            semiparametric estimation in high-dimensional biology},
128
      number = {15},
128
          journal={under review},
129
      month = {July},
129
          volume={},
130
      year  = {2017},
130
          number={},
131
      publisher = {The Open Journal},
131
          pages={},
132
      doi = {10.21105/joss.00295},
132
          year = {2021+},
133
      url = {https://doi.org/10.21105/joss.00295}
133
          publisher={},
134
    }
134
          doi = {},
135
135
          url = {https://arxiv.org/abs/1710.05451}
136
    @article{hejazi2021generalization,
136
        }
137
      author = {Hejazi, Nima S and Boileau, Philippe and {van der Laan},
137
138
        Mark J and Hubbard, Alan E},
138
        @manual{hejazi2019biotmlebioc,
139
      title = {A generalization of moderated statistics to data adaptive
139
          author = {Hejazi, Nima S and {van der Laan}, Mark J and Hubbard, Alan
140
        semiparametric estimation in high-dimensional biology},
140
            E},
141
      journal={under review},
141
          title = {{biotmle}: {Targeted Learning} with moderated statistics for
142
      volume={},
142
            biomarker discovery},
143
      number={},
143
          doi = {10.18129/B9.bioc.biotmle},
144
      pages={},
144
          url = {https://bioconductor.org/packages/biotmle},
145
      year = {2021+},
145
          note = {R package version 1.10.0}
146
      publisher={},
146
        }
147
      doi = {},
147
148
      url = {https://arxiv.org/abs/1710.05451}
148
---
149
    }
149
150
150
## Related
151
    @manual{hejazi2019biotmlebioc,
151
152
      author = {Hejazi, Nima S and {van der Laan}, Mark J and Hubbard, Alan
152
* [R/`biotmleData`](https://github.com/nhejazi/biotmleData) - R package with
153
        E},
153
    example experimental data for use with this analysis package.
154
      title = {{biotmle}: {Targeted Learning} with moderated statistics for
154
155
        biomarker discovery},
155
---
156
      doi = {10.18129/B9.bioc.biotmle},
156
157
      url = {https://bioconductor.org/packages/biotmle},
157
## Funding
158
      note = {R package version 1.10.0}
158
159
    }
159
The development of this software was supported in part through grants from the
160
```
160
National Institutes of Health: [P42 ES004705-29](https://projectreporter.nih.gov/project_info_details.cfm?aid=9260357&map=y) and [R01 ES021369-05](https://projectreporter.nih.gov/project_info_description.cfm?aid=9210551&icde=37849782&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball=).
161
161
162
-----
162
---
163
163
164
## Related
164
## License
165
165
166
  - [R/`biotmleData`](https://github.com/nhejazi/biotmleData) - R
166
&copy; 2016-2021 [Nima S. Hejazi](https://nimahejazi.org)
167
    package with example experimental data for use with this analysis
167
168
    package.
168
The contents of this repository are distributed under the MIT license. See file
169
169
`LICENSE` for details.
170
-----
170
171
171
---
172
## Funding
173
174
The development of this software was supported in part through grants
175
from the National Institutes of Health: [P42
176
ES004705-29](https://projectreporter.nih.gov/project_info_details.cfm?aid=9260357&map=y)
177
and [R01
178
ES021369-05](https://projectreporter.nih.gov/project_info_description.cfm?aid=9210551&icde=37849782&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball=).
179
180
-----
181
182
## License
183
184
© 2016-2021 [Nima S. Hejazi](https://nimahejazi.org)
185
186
The contents of this repository are distributed under the MIT license.
187
See file `LICENSE` for details.
188
189
-----
190
191
## References
192
193
<div id="refs" class="references">
194
195
<div id="ref-bembom2009biomarker">
196
197
Bembom, Oliver, Maya L Petersen, Soo-Yon Rhee, W Jeffrey Fessel, Sandra
198
E Sinisi, Robert W Shafer, and Mark J van der Laan. 2009. “Biomarker
199
Discovery Using Targeted Maximum-Likelihood Estimation: Application to
200
the Treatment of Antiretroviral-Resistant Hiv Infection.” *Statistics in
201
Medicine* 28 (1): 152–72.
202
203
</div>
204
205
<div id="ref-hejazi2021generalization">
206
207
Hejazi, Nima S, Mark J van der Laan, and Alan E Hubbard. 2021. “A
208
Generalization of Moderated Statistics to Data Adaptive Semiparametric
209
Estimation in High-Dimensional Biology.” *Under Review*.
210
<https://arxiv.org/abs/1710.05451>.
211
212
</div>
213
214
<div id="ref-rosenblum2009confidence">
215
216
Rosenblum, Michael A, and Mark J van der Laan. 2009. “Confidence
217
Intervals for the Population Mean Tailored to Small Sample Sizes, with
218
Applications to Survey Sampling.” *The International Journal of
219
Biostatistics* 5 (1).
220
221
</div>
222
223
<div id="ref-smyth2004linear">
224
225
Smyth, Gordon K. 2004. “Linear Models and Empirical Bayes Methods for
226
Assessing Differential Expression in Microarray Experiments.”
227
*Statistical Applications in Genetics and Molecular Biology* 3 (1):
228
1–25. <https://doi.org/10.2202/1544-6115.1027>.
229
230
</div>
231
232
<div id="ref-tsiatis2007semiparametric">
233
234
Tsiatis, Anastasios. 2007. *Semiparametric Theory and Missing Data*.
235
Springer Science & Business Media.
236
237
</div>
238
239
<div id="ref-vdl2011targeted">
240
241
van der Laan, Mark J., and Sherri Rose. 2011. *Targeted Learning: Causal
242
Inference for Observational and Experimental Data*. Springer Science &
243
Business Media.
244
245
</div>
246
247
<div id="ref-vdl2018targeted">
248
249
van der Laan, Mark J, and Sherri Rose. 2018. *Targeted Learning in Data
250
Science: Causal Inference for Complex Longitudinal Studies*. Springer
251
Science & Business Media.
252
253
</div>
254
255
</div>