Switch to side-by-side view

--- a
+++ b/tests/testthat/test-biomarkertmle.R
@@ -0,0 +1,40 @@
+library(dplyr)
+library(biotmleData)
+library(SuperLearner)
+library(SummarizedExperiment)
+data(illuminaData)
+
+## SETUP TESTS ################################################################
+colData(illuminaData) <- colData(illuminaData) %>%
+  data.frame() %>%
+  mutate(age = as.numeric(age > median(age))) %>%
+  DataFrame()
+varInt_index <- which(names(colData(illuminaData)) %in% "benzene")
+
+biomarkerTMLEout <- biomarkertmle(
+  se = illuminaData[1:2, ],
+  varInt = varInt_index,
+  bppar_type = BiocParallel::SerialParam(),
+  g_lib = c("SL.mean", "SL.glm"),
+  Q_lib = c("SL.mean", "SL.glm")
+)
+
+## BEGIN TESTS ################################################################
+test_that("biomarkertmle output object is of class type S4", {
+  expect_equivalent(typeof(biomarkerTMLEout), "S4")
+})
+
+test_that("biomarkertmle object is of appropriate custom class", {
+  expect_equivalent(class(biomarkerTMLEout), "bioTMLE")
+})
+
+test_that("biomarkertmle consistently stores input example data", {
+  expect_equal(
+    assay(biomarkerTMLEout)[1, c(17, 83, 117)],
+    assay(illuminaData)[1, c(17, 83, 117)],
+  )
+})
+
+test_that("biomarkertmle output returns IC estimate for each subject", {
+  expect_equal(ncol(assay(biomarkerTMLEout)), ncol(illuminaData))
+})