[efa494]: / paper / codemeta.json

Download this file

39 lines (37 with data), 1.3 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
{
"@context": "https://raw.githubusercontent.com/mbjones/codemeta/master/codemeta.jsonld",
"@type": "Code",
"author": [
{
"@id": "0000-0002-7127-2789",
"@type": "Person",
"email": "nhejazi@berkeley.edu",
"name": "Nima S. Hejazi",
"affiliation": "University of California, Berkeley"
},
{
"@id": "0000-0002-3769-0127",
"@type": "Person",
"email": "hubbard@berkeley.edu",
"name": "Alan E. Hubbard",
"affiliation": "University of California, Berkeley"
},
{
"@id": "0000-0003-2680-3066",
"@type": "Person",
"email": "wcai@berkeley.edu",
"name": "Weixin Cai",
"affiliation": "University of California, Berkeley"
}
],
"identifier": "",
"codeRepository": "https://github.com/nhejazi/biotmle",
"datePublished": "2017-07-13",
"dateModified": "2017-07-13",
"dateCreated": "2017-01-08",
"description": "R package facilitating biomarker discovery by generalizing moderated statistics for use with asymptotically linear statistical target parameters",
"keywords": "targeted learning, variable importance, causal inference, bioinformatics, genomics, R",
"license": "MIT",
"title": "biotmle: Targeted Learning for Biomarker Discovery",
"version": "v1.1.0"
}