Diff of /man/modtest_ic.Rd [000000] .. [efa494]

Switch to unified view

a b/man/modtest_ic.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/eif_moderated.R
3
\name{modtest_ic}
4
\alias{modtest_ic}
5
\title{Moderated Statistical Tests for Influence Functions}
6
\usage{
7
modtest_ic(biotmle, adjust = "BH", pval_type = c("normal", "logistic"), ...)
8
}
9
\arguments{
10
\item{biotmle}{\code{biotmle} object as generated by \code{biomarkertmle}}
11
12
\item{adjust}{the multiple testing correction to be applied to p-values that
13
are generated from the moderated tests. The recommended (default) method
14
is that of Benjamini and Hochberg. See \link[limma]{topTable} for a list of
15
appropriate methods.}
16
17
\item{pval_type}{The reference distribution to be used for computing the
18
p-value. Those based on the normal approximation tend to provide misleading
19
inference when working with moderately sized (finite) samples. Use of the
20
logistic distribution has been found to empirically improve performance in
21
settings where multiple hypothesis testing is a concern.}
22
23
\item{...}{Other arguments passed to \code{\link[limma]{topTable}}.}
24
}
25
\value{
26
\code{biotmle} object containing the results of applying both
27
 \code{\link[limma]{lmFit}} and \code{\link[limma]{topTable}}.
28
}
29
\description{
30
Performs variance shrinkage via application of an empirical Bayes procedure
31
(of LIMMA) on the observed data after a transformation moving the data to
32
influence function space, based on the average treatment effect parameter.
33
}
34
\examples{
35
library(dplyr)
36
library(biotmleData)
37
library(SuperLearner)
38
library(SummarizedExperiment)
39
data(illuminaData)
40
41
colData(illuminaData) <- colData(illuminaData) \%>\%
42
  data.frame() \%>\%
43
  dplyr::mutate(age = as.numeric(age > median(age))) \%>\%
44
  DataFrame()
45
benz_idx <- which(names(colData(illuminaData)) \%in\% "benzene")
46
47
biomarkerTMLEout <- biomarkertmle(
48
  se = illuminaData[1:2, ],
49
  varInt = benz_idx,
50
  bppar_type = BiocParallel::SerialParam(),
51
  g_lib = c("SL.mean", "SL.glm"),
52
  Q_lib = c("SL.mean", "SL.glm")
53
)
54
55
limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout)
56
}