|
a |
|
b/man/modtest_ic.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/eif_moderated.R |
|
|
3 |
\name{modtest_ic} |
|
|
4 |
\alias{modtest_ic} |
|
|
5 |
\title{Moderated Statistical Tests for Influence Functions} |
|
|
6 |
\usage{ |
|
|
7 |
modtest_ic(biotmle, adjust = "BH", pval_type = c("normal", "logistic"), ...) |
|
|
8 |
} |
|
|
9 |
\arguments{ |
|
|
10 |
\item{biotmle}{\code{biotmle} object as generated by \code{biomarkertmle}} |
|
|
11 |
|
|
|
12 |
\item{adjust}{the multiple testing correction to be applied to p-values that |
|
|
13 |
are generated from the moderated tests. The recommended (default) method |
|
|
14 |
is that of Benjamini and Hochberg. See \link[limma]{topTable} for a list of |
|
|
15 |
appropriate methods.} |
|
|
16 |
|
|
|
17 |
\item{pval_type}{The reference distribution to be used for computing the |
|
|
18 |
p-value. Those based on the normal approximation tend to provide misleading |
|
|
19 |
inference when working with moderately sized (finite) samples. Use of the |
|
|
20 |
logistic distribution has been found to empirically improve performance in |
|
|
21 |
settings where multiple hypothesis testing is a concern.} |
|
|
22 |
|
|
|
23 |
\item{...}{Other arguments passed to \code{\link[limma]{topTable}}.} |
|
|
24 |
} |
|
|
25 |
\value{ |
|
|
26 |
\code{biotmle} object containing the results of applying both |
|
|
27 |
\code{\link[limma]{lmFit}} and \code{\link[limma]{topTable}}. |
|
|
28 |
} |
|
|
29 |
\description{ |
|
|
30 |
Performs variance shrinkage via application of an empirical Bayes procedure |
|
|
31 |
(of LIMMA) on the observed data after a transformation moving the data to |
|
|
32 |
influence function space, based on the average treatment effect parameter. |
|
|
33 |
} |
|
|
34 |
\examples{ |
|
|
35 |
library(dplyr) |
|
|
36 |
library(biotmleData) |
|
|
37 |
library(SuperLearner) |
|
|
38 |
library(SummarizedExperiment) |
|
|
39 |
data(illuminaData) |
|
|
40 |
|
|
|
41 |
colData(illuminaData) <- colData(illuminaData) \%>\% |
|
|
42 |
data.frame() \%>\% |
|
|
43 |
dplyr::mutate(age = as.numeric(age > median(age))) \%>\% |
|
|
44 |
DataFrame() |
|
|
45 |
benz_idx <- which(names(colData(illuminaData)) \%in\% "benzene") |
|
|
46 |
|
|
|
47 |
biomarkerTMLEout <- biomarkertmle( |
|
|
48 |
se = illuminaData[1:2, ], |
|
|
49 |
varInt = benz_idx, |
|
|
50 |
bppar_type = BiocParallel::SerialParam(), |
|
|
51 |
g_lib = c("SL.mean", "SL.glm"), |
|
|
52 |
Q_lib = c("SL.mean", "SL.glm") |
|
|
53 |
) |
|
|
54 |
|
|
|
55 |
limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout) |
|
|
56 |
} |