--- a +++ b/man/modtest_ic.Rd @@ -0,0 +1,56 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/eif_moderated.R +\name{modtest_ic} +\alias{modtest_ic} +\title{Moderated Statistical Tests for Influence Functions} +\usage{ +modtest_ic(biotmle, adjust = "BH", pval_type = c("normal", "logistic"), ...) +} +\arguments{ +\item{biotmle}{\code{biotmle} object as generated by \code{biomarkertmle}} + +\item{adjust}{the multiple testing correction to be applied to p-values that +are generated from the moderated tests. The recommended (default) method +is that of Benjamini and Hochberg. See \link[limma]{topTable} for a list of +appropriate methods.} + +\item{pval_type}{The reference distribution to be used for computing the +p-value. Those based on the normal approximation tend to provide misleading +inference when working with moderately sized (finite) samples. Use of the +logistic distribution has been found to empirically improve performance in +settings where multiple hypothesis testing is a concern.} + +\item{...}{Other arguments passed to \code{\link[limma]{topTable}}.} +} +\value{ +\code{biotmle} object containing the results of applying both + \code{\link[limma]{lmFit}} and \code{\link[limma]{topTable}}. +} +\description{ +Performs variance shrinkage via application of an empirical Bayes procedure +(of LIMMA) on the observed data after a transformation moving the data to +influence function space, based on the average treatment effect parameter. +} +\examples{ +library(dplyr) +library(biotmleData) +library(SuperLearner) +library(SummarizedExperiment) +data(illuminaData) + +colData(illuminaData) <- colData(illuminaData) \%>\% + data.frame() \%>\% + dplyr::mutate(age = as.numeric(age > median(age))) \%>\% + DataFrame() +benz_idx <- which(names(colData(illuminaData)) \%in\% "benzene") + +biomarkerTMLEout <- biomarkertmle( + se = illuminaData[1:2, ], + varInt = benz_idx, + bppar_type = BiocParallel::SerialParam(), + g_lib = c("SL.mean", "SL.glm"), + Q_lib = c("SL.mean", "SL.glm") +) + +limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout) +}