Diff of /man/heatmap_ic.Rd [000000] .. [efa494]

Switch to unified view

a b/man/heatmap_ic.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/plots.R
3
\name{heatmap_ic}
4
\alias{heatmap_ic}
5
\title{Heatmap for class biotmle}
6
\usage{
7
heatmap_ic(x, ..., design, FDRcutoff = 0.25, type = c("top", "all"), top = 25)
8
}
9
\arguments{
10
\item{x}{Object of class \code{biotmle} as produced by an appropriate call
11
to \code{biomarkertmle}.}
12
13
\item{...}{additional arguments passed to \code{superheat::superheat} as
14
necessary}
15
16
\item{design}{A vector giving the contrast to be displayed in the heatmap.}
17
18
\item{FDRcutoff}{Cutoff to be used in controlling the False Discovery Rate.}
19
20
\item{type}{A \code{character} describing whether to plot only a top number
21
(as defined by FDR-corrected p-value) of biomarkers or all biomarkers.}
22
23
\item{top}{Number of identified biomarkers to plot in the heatmap.}
24
}
25
\value{
26
heatmap (from \pkg{superheat}) using hierarchical clustering to plot
27
 the changes in the variable importance measure for all subjects across a
28
 specified top number of biomarkers.
29
}
30
\description{
31
Heatmap of contributions of a select subset of biomarkers to the variable
32
importance measure changes as assessed by influence curve-based estimation,
33
across all subjects. The heatmap produced performs supervised clustering, as
34
per Pollard & van der Laan (2008) <doi:10.2202/1544-6115.1404>.
35
}
36
\examples{
37
\dontrun{
38
library(dplyr)
39
library(biotmleData)
40
library(SummarizedExperiment)
41
data(illuminaData)
42
43
colData(illuminaData) <- colData(illuminaData) \%>\%
44
  data.frame() \%>\%
45
  mutate(age = as.numeric(age > median(age))) \%>\%
46
  DataFrame()
47
benz_idx <- which(names(colData(illuminaData)) \%in\% "benzene")
48
49
biomarkerTMLEout <- biomarkertmle(
50
  se = illuminaData,
51
  varInt = benz_idx,
52
  bppar_type = BiocParallel::SerialParam(),
53
  g_lib = c("SL.mean", "SL.glm"),
54
  Q_lib = c("SL.mean", "SL.glm")
55
)
56
57
limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout)
58
59
heatmap_ic(x = limmaTMLEout, design = design, FDRcutoff = 0.05, top = 10)
60
}
61
}