|
a |
|
b/man/heatmap_ic.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/plots.R |
|
|
3 |
\name{heatmap_ic} |
|
|
4 |
\alias{heatmap_ic} |
|
|
5 |
\title{Heatmap for class biotmle} |
|
|
6 |
\usage{ |
|
|
7 |
heatmap_ic(x, ..., design, FDRcutoff = 0.25, type = c("top", "all"), top = 25) |
|
|
8 |
} |
|
|
9 |
\arguments{ |
|
|
10 |
\item{x}{Object of class \code{biotmle} as produced by an appropriate call |
|
|
11 |
to \code{biomarkertmle}.} |
|
|
12 |
|
|
|
13 |
\item{...}{additional arguments passed to \code{superheat::superheat} as |
|
|
14 |
necessary} |
|
|
15 |
|
|
|
16 |
\item{design}{A vector giving the contrast to be displayed in the heatmap.} |
|
|
17 |
|
|
|
18 |
\item{FDRcutoff}{Cutoff to be used in controlling the False Discovery Rate.} |
|
|
19 |
|
|
|
20 |
\item{type}{A \code{character} describing whether to plot only a top number |
|
|
21 |
(as defined by FDR-corrected p-value) of biomarkers or all biomarkers.} |
|
|
22 |
|
|
|
23 |
\item{top}{Number of identified biomarkers to plot in the heatmap.} |
|
|
24 |
} |
|
|
25 |
\value{ |
|
|
26 |
heatmap (from \pkg{superheat}) using hierarchical clustering to plot |
|
|
27 |
the changes in the variable importance measure for all subjects across a |
|
|
28 |
specified top number of biomarkers. |
|
|
29 |
} |
|
|
30 |
\description{ |
|
|
31 |
Heatmap of contributions of a select subset of biomarkers to the variable |
|
|
32 |
importance measure changes as assessed by influence curve-based estimation, |
|
|
33 |
across all subjects. The heatmap produced performs supervised clustering, as |
|
|
34 |
per Pollard & van der Laan (2008) <doi:10.2202/1544-6115.1404>. |
|
|
35 |
} |
|
|
36 |
\examples{ |
|
|
37 |
\dontrun{ |
|
|
38 |
library(dplyr) |
|
|
39 |
library(biotmleData) |
|
|
40 |
library(SummarizedExperiment) |
|
|
41 |
data(illuminaData) |
|
|
42 |
|
|
|
43 |
colData(illuminaData) <- colData(illuminaData) \%>\% |
|
|
44 |
data.frame() \%>\% |
|
|
45 |
mutate(age = as.numeric(age > median(age))) \%>\% |
|
|
46 |
DataFrame() |
|
|
47 |
benz_idx <- which(names(colData(illuminaData)) \%in\% "benzene") |
|
|
48 |
|
|
|
49 |
biomarkerTMLEout <- biomarkertmle( |
|
|
50 |
se = illuminaData, |
|
|
51 |
varInt = benz_idx, |
|
|
52 |
bppar_type = BiocParallel::SerialParam(), |
|
|
53 |
g_lib = c("SL.mean", "SL.glm"), |
|
|
54 |
Q_lib = c("SL.mean", "SL.glm") |
|
|
55 |
) |
|
|
56 |
|
|
|
57 |
limmaTMLEout <- modtest_ic(biotmle = biomarkerTMLEout) |
|
|
58 |
|
|
|
59 |
heatmap_ic(x = limmaTMLEout, design = design, FDRcutoff = 0.05, top = 10) |
|
|
60 |
} |
|
|
61 |
} |