--- a +++ b/man/biomarkertmle.Rd @@ -0,0 +1,97 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/biotmle.R +\name{biomarkertmle} +\alias{biomarkertmle} +\title{Biomarker Evaluation with Targeted Minimum Loss Estimation of the ATE} +\usage{ +biomarkertmle( + se, + varInt, + normalized = TRUE, + ngscounts = FALSE, + bppar_type = BiocParallel::MulticoreParam(), + bppar_debug = FALSE, + cv_folds = 1, + g_lib = c("SL.mean", "SL.glm", "SL.bayesglm"), + Q_lib = c("SL.mean", "SL.bayesglm", "SL.earth", "SL.ranger"), + ... +) +} +\arguments{ +\item{se}{A \code{SummarizedExperiment} containing microarray expression +or next-generation sequencing data in the \code{assays} slot and a matrix +of phenotype-level data in the \code{colData} slot.} + +\item{varInt}{A \code{numeric} indicating the column of the design matrix +corresponding to the treatment or outcome of interest (in the +\code{colData} slot of the \code{SummarizedExperiment} argument "se").} + +\item{normalized}{A \code{logical} indicating whether the data included in +the \code{assay} slot of the input \code{SummarizedExperiment} object has +been normalized externally. The default is set to \code{TRUE} with the +expectation that an appropriate normalization method has been applied. If +set to \code{FALSE}, median normalization is performed for microarray data.} + +\item{ngscounts}{A \code{logical} indicating whether the data are counts +generated from a next-generation sequencing experiment (e.g., RNA-seq). The +default setting assumes continuous expression measures as generated by +microarray platforms.} + +\item{bppar_type}{A parallelization option specified by \code{BiocParallel}. +Consult the manual page for \code{\link[BiocParallel]{BiocParallelParam}} +for possible types and their descriptions. The default for this argument is +\code{\link[BiocParallel]{MulticoreParam}}, for multicore evaluation.} + +\item{bppar_debug}{A \code{logical} indicating whether or not to rely upon +pkg{BiocParallel}. Setting this argument to \code{TRUE}, replaces the call +to \code{\link[BiocParallel]{bplapply}} by a call to \code{lapply}, which +significantly reduces the overhead of debugging. Note that invoking this +option overrides all other parallelization arguments.} + +\item{cv_folds}{A \code{numeric} scalar indicating how many folds to use in +performing targeted minimum loss estimation. Cross-validated estimates have +been demonstrated to allow relaxation of certain theoretical conditions and +and accommodate the construction of more conservative variance estimates.} + +\item{g_lib}{A \code{character} vector specifying the library of machine +learning algorithms for use in fitting the propensity score P(A = a | W).} + +\item{Q_lib}{A \code{character} vector specifying the library of machine +learning algorithms for use in fitting the outcome regression E[Y | A,W].} + +\item{...}{Additional arguments to be passed to \code{\link[drtmle]{drtmle}} +in computing the targeted minimum loss estimator of the average treatment +effect.} +} +\value{ +S4 object of class \code{biotmle}, inheriting from + \code{SummarizedExperiment}, with additional slots \code{tmleOut} and + \code{call}, among others, containing TML estimates of the ATE of exposure + on biomarker expression. +} +\description{ +Computes the causal target parameter defined as the difference between the +biomarker expression values under treatment and those same values under no +treatment, using Targeted Minimum Loss Estimation. +} +\examples{ +library(dplyr) +library(biotmleData) +library(SuperLearner) +library(SummarizedExperiment) +data(illuminaData) + +colData(illuminaData) <- colData(illuminaData) \%>\% + data.frame() \%>\% + mutate(age = as.numeric(age > median(age))) \%>\% + DataFrame() +benz_idx <- which(names(colData(illuminaData)) \%in\% "benzene") + +biomarkerTMLEout <- biomarkertmle( + se = illuminaData[1:2, ], + varInt = benz_idx, + bppar_type = BiocParallel::SerialParam(), + g_lib = c("SL.mean", "SL.glm"), + Q_lib = c("SL.mean", "SL.glm") +) +}