Diff of /README.md [000000] .. [efa494]

Switch to side-by-side view

--- a
+++ b/README.md
@@ -0,0 +1,255 @@
+
+<!-- README.md is generated from README.Rmd. Please edit that file -->
+
+# R/`biotmle`
+
+[![R-CMD-check](https://github.com/nhejazi/biotmle/workflows/R-CMD-check/badge.svg)](https://github.com/nhejazi/biotmle/actions)
+[![Coverage
+Status](https://img.shields.io/codecov/c/github/nhejazi/biotmle/master.svg)](https://codecov.io/github/nhejazi/biotmle?branch=master)
+[![Project Status: Active – The project has reached a stable, usable
+state and is being actively
+developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active)
+[![BioC
+status](http://www.bioconductor.org/shields/build/release/bioc/biotmle.svg)](https://bioconductor.org/checkResults/release/bioc-LATEST/biotmle)
+[![Bioc
+Time](http://bioconductor.org/shields/years-in-bioc/biotmle.svg)](https://bioconductor.org/packages/release/bioc/html/biotmle.html)
+[![Bioc
+Downloads](http://bioconductor.org/shields/downloads/biotmle.svg)](https://bioconductor.org/packages/release/bioc/html/biotmle.html)
+[![MIT
+license](http://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)
+[![DOI](https://zenodo.org/badge/65854775.svg)](https://zenodo.org/badge/latestdoi/65854775)
+[![JOSS
+Status](http://joss.theoj.org/papers/02be843d9bab1b598187bfbb08ce3949/status.svg)](http://joss.theoj.org/papers/02be843d9bab1b598187bfbb08ce3949)
+
+> Targeted Learning with Moderated Statistics for Biomarker Discovery
+
+**Authors:** [Nima Hejazi](https://nimahejazi.org), [Mark van der
+Laan](https://vanderlaan-lab.org/about), and [Alan
+Hubbard](https://hubbard.berkeley.edu)
+
+-----
+
+## What’s `biotmle`?
+
+The `biotmle` R package facilitates biomarker discovery through a
+generalization of the moderated t-statistic (Smyth 2004) that extends
+the procedure to locally efficient estimators of asymptotically linear
+target parameters (Tsiatis 2007). The set of methods implemented modify
+targeted maximum likelihood (TML) estimators of statistical (or causal)
+target parameters (e.g., average treatment effect) to apply variance
+moderation to the standard variance estimator based on the efficient
+influence function (EIF) of the target parameter (van der Laan and Rose
+2011, 2018). By performing a moderated hypothesis test that pools the
+individual probe-specific EIF-based variance estimates, a robust
+variance estimator is constructed, which stabilizes the standard error
+estimates and improves the performance of such estimators both in
+smaller samples and in settings where the EIF is poorly estimated. The
+resultant procedure allows for the construction of conservative
+hypothesis tests that reduce the false discovery rate and/or the
+family-wise error rate (Hejazi, van der Laan, and Hubbard 2021).
+Improvements upon prior TML-based approaches to biomarker discovery
+(e.g., Bembom et al. (2009)) include both the moderated variance
+estimator as well as the use of conservative reference distributions for
+the corresponding moderated test statistics (e.g., logistic
+distribution), inspired by tail bounds based on concentration
+inequalities (Rosenblum and van der Laan 2009); the latter prove
+critical for obtaining robust inference when the finite-sample
+distribution of the estimator deviates from normality.
+
+-----
+
+## Installation
+
+For standard use, install from
+[Bioconductor](https://bioconductor.org/packages/biotmle) using
+[`BiocManager`](https://CRAN.R-project.org/package=BiocManager):
+
+``` r
+if (!requireNamespace("BiocManager", quietly=TRUE)) {
+  install.packages("BiocManager")
+}
+BiocManager::install("biotmle")
+```
+
+To contribute, install the bleeding-edge *development version* from
+GitHub via [`remotes`](https://CRAN.R-project.org/package=remotes):
+
+``` r
+remotes::install_github("nhejazi/biotmle")
+```
+
+Current and prior [Bioconductor](https://bioconductor.org) releases are
+available under branches with numbers prefixed by “RELEASE\_”. For
+example, to install the version of this package available via
+Bioconductor 3.6, use
+
+``` r
+remotes::install_github("nhejazi/biotmle", ref = "RELEASE_3_6")
+```
+
+-----
+
+## Example
+
+For details on how to best use the `biotmle` R package, please consult
+the most recent [package
+vignette](https://bioconductor.org/packages/release/bioc/vignettes/biotmle/inst/doc/exposureBiomarkers.html)
+available through the [Bioconductor
+project](https://bioconductor.org/packages/biotmle).
+
+-----
+
+## Issues
+
+If you encounter any bugs or have any specific feature requests, please
+[file an issue](https://github.com/nhejazi/biotmle/issues).
+
+-----
+
+## Contributions
+
+Contributions are very welcome. Interested contributors should consult
+our [contribution
+guidelines](https://github.com/nhejazi/biotmle/blob/master/CONTRIBUTING.md)
+prior to submitting a pull request.
+
+-----
+
+## Citation
+
+After using the `biotmle` R package, please cite both of the following:
+
+``` 
+    @article{hejazi2017biotmle,
+      author = {Hejazi, Nima S and Cai, Weixin and Hubbard, Alan E},
+      title = {biotmle: Targeted Learning for Biomarker Discovery},
+      journal = {The Journal of Open Source Software},
+      volume = {2},
+      number = {15},
+      month = {July},
+      year  = {2017},
+      publisher = {The Open Journal},
+      doi = {10.21105/joss.00295},
+      url = {https://doi.org/10.21105/joss.00295}
+    }
+
+    @article{hejazi2021generalization,
+      author = {Hejazi, Nima S and Boileau, Philippe and {van der Laan},
+        Mark J and Hubbard, Alan E},
+      title = {A generalization of moderated statistics to data adaptive
+        semiparametric estimation in high-dimensional biology},
+      journal={under review},
+      volume={},
+      number={},
+      pages={},
+      year = {2021+},
+      publisher={},
+      doi = {},
+      url = {https://arxiv.org/abs/1710.05451}
+    }
+
+    @manual{hejazi2019biotmlebioc,
+      author = {Hejazi, Nima S and {van der Laan}, Mark J and Hubbard, Alan
+        E},
+      title = {{biotmle}: {Targeted Learning} with moderated statistics for
+        biomarker discovery},
+      doi = {10.18129/B9.bioc.biotmle},
+      url = {https://bioconductor.org/packages/biotmle},
+      note = {R package version 1.10.0}
+    }
+```
+
+-----
+
+## Related
+
+  - [R/`biotmleData`](https://github.com/nhejazi/biotmleData) - R
+    package with example experimental data for use with this analysis
+    package.
+
+-----
+
+## Funding
+
+The development of this software was supported in part through grants
+from the National Institutes of Health: [P42
+ES004705-29](https://projectreporter.nih.gov/project_info_details.cfm?aid=9260357&map=y)
+and [R01
+ES021369-05](https://projectreporter.nih.gov/project_info_description.cfm?aid=9210551&icde=37849782&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball=).
+
+-----
+
+## License
+
+© 2016-2021 [Nima S. Hejazi](https://nimahejazi.org)
+
+The contents of this repository are distributed under the MIT license.
+See file `LICENSE` for details.
+
+-----
+
+## References
+
+<div id="refs" class="references">
+
+<div id="ref-bembom2009biomarker">
+
+Bembom, Oliver, Maya L Petersen, Soo-Yon Rhee, W Jeffrey Fessel, Sandra
+E Sinisi, Robert W Shafer, and Mark J van der Laan. 2009. “Biomarker
+Discovery Using Targeted Maximum-Likelihood Estimation: Application to
+the Treatment of Antiretroviral-Resistant Hiv Infection.” *Statistics in
+Medicine* 28 (1): 152–72.
+
+</div>
+
+<div id="ref-hejazi2021generalization">
+
+Hejazi, Nima S, Mark J van der Laan, and Alan E Hubbard. 2021. “A
+Generalization of Moderated Statistics to Data Adaptive Semiparametric
+Estimation in High-Dimensional Biology.” *Under Review*.
+<https://arxiv.org/abs/1710.05451>.
+
+</div>
+
+<div id="ref-rosenblum2009confidence">
+
+Rosenblum, Michael A, and Mark J van der Laan. 2009. “Confidence
+Intervals for the Population Mean Tailored to Small Sample Sizes, with
+Applications to Survey Sampling.” *The International Journal of
+Biostatistics* 5 (1).
+
+</div>
+
+<div id="ref-smyth2004linear">
+
+Smyth, Gordon K. 2004. “Linear Models and Empirical Bayes Methods for
+Assessing Differential Expression in Microarray Experiments.”
+*Statistical Applications in Genetics and Molecular Biology* 3 (1):
+1–25. <https://doi.org/10.2202/1544-6115.1027>.
+
+</div>
+
+<div id="ref-tsiatis2007semiparametric">
+
+Tsiatis, Anastasios. 2007. *Semiparametric Theory and Missing Data*.
+Springer Science & Business Media.
+
+</div>
+
+<div id="ref-vdl2011targeted">
+
+van der Laan, Mark J., and Sherri Rose. 2011. *Targeted Learning: Causal
+Inference for Observational and Experimental Data*. Springer Science &
+Business Media.
+
+</div>
+
+<div id="ref-vdl2018targeted">
+
+van der Laan, Mark J, and Sherri Rose. 2018. *Targeted Learning in Data
+Science: Causal Inference for Complex Longitudinal Studies*. Springer
+Science & Business Media.
+
+</div>
+
+</div>