a b/README.md
1
2
<!-- README.md is generated from README.Rmd. Please edit that file -->
3
4
# R/`biotmle`
5
6
[![R-CMD-check](https://github.com/nhejazi/biotmle/workflows/R-CMD-check/badge.svg)](https://github.com/nhejazi/biotmle/actions)
7
[![Coverage
8
Status](https://img.shields.io/codecov/c/github/nhejazi/biotmle/master.svg)](https://codecov.io/github/nhejazi/biotmle?branch=master)
9
[![Project Status: Active – The project has reached a stable, usable
10
state and is being actively
11
developed.](http://www.repostatus.org/badges/latest/active.svg)](http://www.repostatus.org/#active)
12
[![BioC
13
status](http://www.bioconductor.org/shields/build/release/bioc/biotmle.svg)](https://bioconductor.org/checkResults/release/bioc-LATEST/biotmle)
14
[![Bioc
15
Time](http://bioconductor.org/shields/years-in-bioc/biotmle.svg)](https://bioconductor.org/packages/release/bioc/html/biotmle.html)
16
[![Bioc
17
Downloads](http://bioconductor.org/shields/downloads/biotmle.svg)](https://bioconductor.org/packages/release/bioc/html/biotmle.html)
18
[![MIT
19
license](http://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)
20
[![DOI](https://zenodo.org/badge/65854775.svg)](https://zenodo.org/badge/latestdoi/65854775)
21
[![JOSS
22
Status](http://joss.theoj.org/papers/02be843d9bab1b598187bfbb08ce3949/status.svg)](http://joss.theoj.org/papers/02be843d9bab1b598187bfbb08ce3949)
23
24
> Targeted Learning with Moderated Statistics for Biomarker Discovery
25
26
**Authors:** [Nima Hejazi](https://nimahejazi.org), [Mark van der
27
Laan](https://vanderlaan-lab.org/about), and [Alan
28
Hubbard](https://hubbard.berkeley.edu)
29
30
-----
31
32
## What’s `biotmle`?
33
34
The `biotmle` R package facilitates biomarker discovery through a
35
generalization of the moderated t-statistic (Smyth 2004) that extends
36
the procedure to locally efficient estimators of asymptotically linear
37
target parameters (Tsiatis 2007). The set of methods implemented modify
38
targeted maximum likelihood (TML) estimators of statistical (or causal)
39
target parameters (e.g., average treatment effect) to apply variance
40
moderation to the standard variance estimator based on the efficient
41
influence function (EIF) of the target parameter (van der Laan and Rose
42
2011, 2018). By performing a moderated hypothesis test that pools the
43
individual probe-specific EIF-based variance estimates, a robust
44
variance estimator is constructed, which stabilizes the standard error
45
estimates and improves the performance of such estimators both in
46
smaller samples and in settings where the EIF is poorly estimated. The
47
resultant procedure allows for the construction of conservative
48
hypothesis tests that reduce the false discovery rate and/or the
49
family-wise error rate (Hejazi, van der Laan, and Hubbard 2021).
50
Improvements upon prior TML-based approaches to biomarker discovery
51
(e.g., Bembom et al. (2009)) include both the moderated variance
52
estimator as well as the use of conservative reference distributions for
53
the corresponding moderated test statistics (e.g., logistic
54
distribution), inspired by tail bounds based on concentration
55
inequalities (Rosenblum and van der Laan 2009); the latter prove
56
critical for obtaining robust inference when the finite-sample
57
distribution of the estimator deviates from normality.
58
59
-----
60
61
## Installation
62
63
For standard use, install from
64
[Bioconductor](https://bioconductor.org/packages/biotmle) using
65
[`BiocManager`](https://CRAN.R-project.org/package=BiocManager):
66
67
``` r
68
if (!requireNamespace("BiocManager", quietly=TRUE)) {
69
  install.packages("BiocManager")
70
}
71
BiocManager::install("biotmle")
72
```
73
74
To contribute, install the bleeding-edge *development version* from
75
GitHub via [`remotes`](https://CRAN.R-project.org/package=remotes):
76
77
``` r
78
remotes::install_github("nhejazi/biotmle")
79
```
80
81
Current and prior [Bioconductor](https://bioconductor.org) releases are
82
available under branches with numbers prefixed by “RELEASE\_”. For
83
example, to install the version of this package available via
84
Bioconductor 3.6, use
85
86
``` r
87
remotes::install_github("nhejazi/biotmle", ref = "RELEASE_3_6")
88
```
89
90
-----
91
92
## Example
93
94
For details on how to best use the `biotmle` R package, please consult
95
the most recent [package
96
vignette](https://bioconductor.org/packages/release/bioc/vignettes/biotmle/inst/doc/exposureBiomarkers.html)
97
available through the [Bioconductor
98
project](https://bioconductor.org/packages/biotmle).
99
100
-----
101
102
## Issues
103
104
If you encounter any bugs or have any specific feature requests, please
105
[file an issue](https://github.com/nhejazi/biotmle/issues).
106
107
-----
108
109
## Contributions
110
111
Contributions are very welcome. Interested contributors should consult
112
our [contribution
113
guidelines](https://github.com/nhejazi/biotmle/blob/master/CONTRIBUTING.md)
114
prior to submitting a pull request.
115
116
-----
117
118
## Citation
119
120
After using the `biotmle` R package, please cite both of the following:
121
122
``` 
123
    @article{hejazi2017biotmle,
124
      author = {Hejazi, Nima S and Cai, Weixin and Hubbard, Alan E},
125
      title = {biotmle: Targeted Learning for Biomarker Discovery},
126
      journal = {The Journal of Open Source Software},
127
      volume = {2},
128
      number = {15},
129
      month = {July},
130
      year  = {2017},
131
      publisher = {The Open Journal},
132
      doi = {10.21105/joss.00295},
133
      url = {https://doi.org/10.21105/joss.00295}
134
    }
135
136
    @article{hejazi2021generalization,
137
      author = {Hejazi, Nima S and Boileau, Philippe and {van der Laan},
138
        Mark J and Hubbard, Alan E},
139
      title = {A generalization of moderated statistics to data adaptive
140
        semiparametric estimation in high-dimensional biology},
141
      journal={under review},
142
      volume={},
143
      number={},
144
      pages={},
145
      year = {2021+},
146
      publisher={},
147
      doi = {},
148
      url = {https://arxiv.org/abs/1710.05451}
149
    }
150
151
    @manual{hejazi2019biotmlebioc,
152
      author = {Hejazi, Nima S and {van der Laan}, Mark J and Hubbard, Alan
153
        E},
154
      title = {{biotmle}: {Targeted Learning} with moderated statistics for
155
        biomarker discovery},
156
      doi = {10.18129/B9.bioc.biotmle},
157
      url = {https://bioconductor.org/packages/biotmle},
158
      note = {R package version 1.10.0}
159
    }
160
```
161
162
-----
163
164
## Related
165
166
  - [R/`biotmleData`](https://github.com/nhejazi/biotmleData) - R
167
    package with example experimental data for use with this analysis
168
    package.
169
170
-----
171
172
## Funding
173
174
The development of this software was supported in part through grants
175
from the National Institutes of Health: [P42
176
ES004705-29](https://projectreporter.nih.gov/project_info_details.cfm?aid=9260357&map=y)
177
and [R01
178
ES021369-05](https://projectreporter.nih.gov/project_info_description.cfm?aid=9210551&icde=37849782&ddparam=&ddvalue=&ddsub=&cr=1&csb=default&cs=ASC&pball=).
179
180
-----
181
182
## License
183
184
© 2016-2021 [Nima S. Hejazi](https://nimahejazi.org)
185
186
The contents of this repository are distributed under the MIT license.
187
See file `LICENSE` for details.
188
189
-----
190
191
## References
192
193
<div id="refs" class="references">
194
195
<div id="ref-bembom2009biomarker">
196
197
Bembom, Oliver, Maya L Petersen, Soo-Yon Rhee, W Jeffrey Fessel, Sandra
198
E Sinisi, Robert W Shafer, and Mark J van der Laan. 2009. “Biomarker
199
Discovery Using Targeted Maximum-Likelihood Estimation: Application to
200
the Treatment of Antiretroviral-Resistant Hiv Infection.” *Statistics in
201
Medicine* 28 (1): 152–72.
202
203
</div>
204
205
<div id="ref-hejazi2021generalization">
206
207
Hejazi, Nima S, Mark J van der Laan, and Alan E Hubbard. 2021. “A
208
Generalization of Moderated Statistics to Data Adaptive Semiparametric
209
Estimation in High-Dimensional Biology.” *Under Review*.
210
<https://arxiv.org/abs/1710.05451>.
211
212
</div>
213
214
<div id="ref-rosenblum2009confidence">
215
216
Rosenblum, Michael A, and Mark J van der Laan. 2009. “Confidence
217
Intervals for the Population Mean Tailored to Small Sample Sizes, with
218
Applications to Survey Sampling.” *The International Journal of
219
Biostatistics* 5 (1).
220
221
</div>
222
223
<div id="ref-smyth2004linear">
224
225
Smyth, Gordon K. 2004. “Linear Models and Empirical Bayes Methods for
226
Assessing Differential Expression in Microarray Experiments.”
227
*Statistical Applications in Genetics and Molecular Biology* 3 (1):
228
1–25. <https://doi.org/10.2202/1544-6115.1027>.
229
230
</div>
231
232
<div id="ref-tsiatis2007semiparametric">
233
234
Tsiatis, Anastasios. 2007. *Semiparametric Theory and Missing Data*.
235
Springer Science & Business Media.
236
237
</div>
238
239
<div id="ref-vdl2011targeted">
240
241
van der Laan, Mark J., and Sherri Rose. 2011. *Targeted Learning: Causal
242
Inference for Observational and Experimental Data*. Springer Science &
243
Business Media.
244
245
</div>
246
247
<div id="ref-vdl2018targeted">
248
249
van der Laan, Mark J, and Sherri Rose. 2018. *Targeted Learning in Data
250
Science: Causal Inference for Complex Longitudinal Studies*. Springer
251
Science & Business Media.
252
253
</div>
254
255
</div>