|
a |
|
b/R/biotmle.R |
|
|
1 |
utils::globalVariables(c("assay<-")) |
|
|
2 |
|
|
|
3 |
#' Biomarker Evaluation with Targeted Minimum Loss Estimation of the ATE |
|
|
4 |
#' |
|
|
5 |
#' Computes the causal target parameter defined as the difference between the |
|
|
6 |
#' biomarker expression values under treatment and those same values under no |
|
|
7 |
#' treatment, using Targeted Minimum Loss Estimation. |
|
|
8 |
#' |
|
|
9 |
#' @param se A \code{SummarizedExperiment} containing microarray expression |
|
|
10 |
#' or next-generation sequencing data in the \code{assays} slot and a matrix |
|
|
11 |
#' of phenotype-level data in the \code{colData} slot. |
|
|
12 |
#' @param varInt A \code{numeric} indicating the column of the design matrix |
|
|
13 |
#' corresponding to the treatment or outcome of interest (in the |
|
|
14 |
#' \code{colData} slot of the \code{SummarizedExperiment} argument "se"). |
|
|
15 |
#' @param normalized A \code{logical} indicating whether the data included in |
|
|
16 |
#' the \code{assay} slot of the input \code{SummarizedExperiment} object has |
|
|
17 |
#' been normalized externally. The default is set to \code{TRUE} with the |
|
|
18 |
#' expectation that an appropriate normalization method has been applied. If |
|
|
19 |
#' set to \code{FALSE}, median normalization is performed for microarray data. |
|
|
20 |
#' @param ngscounts A \code{logical} indicating whether the data are counts |
|
|
21 |
#' generated from a next-generation sequencing experiment (e.g., RNA-seq). The |
|
|
22 |
#' default setting assumes continuous expression measures as generated by |
|
|
23 |
#' microarray platforms. |
|
|
24 |
#' @param bppar_type A parallelization option specified by \code{BiocParallel}. |
|
|
25 |
#' Consult the manual page for \code{\link[BiocParallel]{BiocParallelParam}} |
|
|
26 |
#' for possible types and their descriptions. The default for this argument is |
|
|
27 |
#' \code{\link[BiocParallel]{MulticoreParam}}, for multicore evaluation. |
|
|
28 |
#' @param bppar_debug A \code{logical} indicating whether or not to rely upon |
|
|
29 |
#' pkg{BiocParallel}. Setting this argument to \code{TRUE}, replaces the call |
|
|
30 |
#' to \code{\link[BiocParallel]{bplapply}} by a call to \code{lapply}, which |
|
|
31 |
#' significantly reduces the overhead of debugging. Note that invoking this |
|
|
32 |
#' option overrides all other parallelization arguments. |
|
|
33 |
#' @param cv_folds A \code{numeric} scalar indicating how many folds to use in |
|
|
34 |
#' performing targeted minimum loss estimation. Cross-validated estimates have |
|
|
35 |
#' been demonstrated to allow relaxation of certain theoretical conditions and |
|
|
36 |
#' and accommodate the construction of more conservative variance estimates. |
|
|
37 |
#' @param g_lib A \code{character} vector specifying the library of machine |
|
|
38 |
#' learning algorithms for use in fitting the propensity score P(A = a | W). |
|
|
39 |
#' @param Q_lib A \code{character} vector specifying the library of machine |
|
|
40 |
#' learning algorithms for use in fitting the outcome regression E[Y | A,W]. |
|
|
41 |
#' @param ... Additional arguments to be passed to \code{\link[drtmle]{drtmle}} |
|
|
42 |
#' in computing the targeted minimum loss estimator of the average treatment |
|
|
43 |
#' effect. |
|
|
44 |
#' |
|
|
45 |
#' @importFrom SummarizedExperiment assay colData rowData SummarizedExperiment |
|
|
46 |
#' @importFrom BiocParallel register bplapply bpprogressbar MulticoreParam |
|
|
47 |
#' @importFrom tibble as_tibble |
|
|
48 |
#' |
|
|
49 |
#' @return S4 object of class \code{biotmle}, inheriting from |
|
|
50 |
#' \code{SummarizedExperiment}, with additional slots \code{tmleOut} and |
|
|
51 |
#' \code{call}, among others, containing TML estimates of the ATE of exposure |
|
|
52 |
#' on biomarker expression. |
|
|
53 |
#' |
|
|
54 |
#' @export biomarkertmle |
|
|
55 |
#' |
|
|
56 |
#' @examples |
|
|
57 |
#' library(dplyr) |
|
|
58 |
#' library(biotmleData) |
|
|
59 |
#' library(SuperLearner) |
|
|
60 |
#' library(SummarizedExperiment) |
|
|
61 |
#' data(illuminaData) |
|
|
62 |
#' |
|
|
63 |
#' colData(illuminaData) <- colData(illuminaData) %>% |
|
|
64 |
#' data.frame() %>% |
|
|
65 |
#' mutate(age = as.numeric(age > median(age))) %>% |
|
|
66 |
#' DataFrame() |
|
|
67 |
#' benz_idx <- which(names(colData(illuminaData)) %in% "benzene") |
|
|
68 |
#' |
|
|
69 |
#' biomarkerTMLEout <- biomarkertmle( |
|
|
70 |
#' se = illuminaData[1:2, ], |
|
|
71 |
#' varInt = benz_idx, |
|
|
72 |
#' bppar_type = BiocParallel::SerialParam(), |
|
|
73 |
#' g_lib = c("SL.mean", "SL.glm"), |
|
|
74 |
#' Q_lib = c("SL.mean", "SL.glm") |
|
|
75 |
#' ) |
|
|
76 |
biomarkertmle <- function(se, |
|
|
77 |
varInt, |
|
|
78 |
normalized = TRUE, |
|
|
79 |
ngscounts = FALSE, |
|
|
80 |
bppar_type = BiocParallel::MulticoreParam(), |
|
|
81 |
bppar_debug = FALSE, |
|
|
82 |
cv_folds = 1, |
|
|
83 |
g_lib = c( |
|
|
84 |
"SL.mean", "SL.glm", "SL.bayesglm" |
|
|
85 |
), |
|
|
86 |
Q_lib = c( |
|
|
87 |
"SL.mean", "SL.bayesglm", "SL.earth", "SL.ranger" |
|
|
88 |
), |
|
|
89 |
...) { |
|
|
90 |
|
|
|
91 |
# catch input and invoke S4 class constructor for "bioTMLE" object |
|
|
92 |
call <- match.call(expand.dots = TRUE) |
|
|
93 |
biotmle <- .biotmle( |
|
|
94 |
SummarizedExperiment( |
|
|
95 |
assays = list(expMeasures = assay(se)), |
|
|
96 |
rowData = rowData(se), |
|
|
97 |
colData = colData(se) |
|
|
98 |
), |
|
|
99 |
call = call, |
|
|
100 |
tmleOut = tibble::as_tibble(matrix(NA, 10, 10), .name_repair = "minimal"), |
|
|
101 |
topTable = tibble::as_tibble(matrix(NA, 10, 10), .name_repair = "minimal") |
|
|
102 |
) |
|
|
103 |
|
|
|
104 |
# invoke the voom transform from LIMMA if next-generation sequencing data) |
|
|
105 |
if (ngscounts) { |
|
|
106 |
voom_out <- rnaseq_ic(biotmle) |
|
|
107 |
voom_exp <- 2^(voom_out$E) |
|
|
108 |
assay(se) <- voom_exp |
|
|
109 |
} |
|
|
110 |
|
|
|
111 |
# set up parallelization based on input |
|
|
112 |
BiocParallel::bpprogressbar(bppar_type) <- TRUE |
|
|
113 |
BiocParallel::register(bppar_type, default = TRUE) |
|
|
114 |
|
|
|
115 |
# TMLE procedure to identify biomarkers based on an EXPOSURE |
|
|
116 |
if (!ngscounts && !normalized) { |
|
|
117 |
# median normalization |
|
|
118 |
exp_normed <- limma::normalizeBetweenArrays(as.matrix(assay(se)), |
|
|
119 |
method = "scale" |
|
|
120 |
) |
|
|
121 |
Y <- tibble::as_tibble(t(exp_normed), .name_repair = "minimal") |
|
|
122 |
} else { |
|
|
123 |
Y <- tibble::as_tibble(t(as.matrix(assay(se))), .name_repair = "minimal") |
|
|
124 |
} |
|
|
125 |
# simple sanity check of whether Y includes array values |
|
|
126 |
if (!all(apply(Y, 2, class) == "numeric")) { |
|
|
127 |
stop("Warning - values in Y do not appear to be numeric.") |
|
|
128 |
} |
|
|
129 |
|
|
|
130 |
# exposure / treatment |
|
|
131 |
A <- as.numeric(SummarizedExperiment::colData(se)[, varInt]) |
|
|
132 |
|
|
|
133 |
# baseline covariates |
|
|
134 |
W <- tibble::as_tibble(SummarizedExperiment::colData(se)[, -varInt], |
|
|
135 |
.name_repair = "minimal") |
|
|
136 |
if (is.null(dim(W)[2])) { |
|
|
137 |
W <- as.numeric(rep(1, length(A))) |
|
|
138 |
} |
|
|
139 |
|
|
|
140 |
# coerce matrix of baseline covariates to numeric |
|
|
141 |
if (!all(is.numeric(apply(W, 2, class)))) { |
|
|
142 |
W <- tibble::as_tibble(apply(W, 2, as.numeric), .name_repair = "minimal") |
|
|
143 |
} |
|
|
144 |
|
|
|
145 |
# perform multi-level TMLE (of the ATE) for genes as Y |
|
|
146 |
if (!bppar_debug) { |
|
|
147 |
biomarkertmle_out <- BiocParallel::bplapply(Y[, seq_along(Y)], |
|
|
148 |
exp_biomarkertmle, |
|
|
149 |
W = W, |
|
|
150 |
A = A, |
|
|
151 |
g_lib = g_lib, |
|
|
152 |
Q_lib = Q_lib, |
|
|
153 |
cv_folds = cv_folds, |
|
|
154 |
... |
|
|
155 |
) |
|
|
156 |
} else { |
|
|
157 |
biomarkertmle_out <- lapply(Y[, seq_along(Y)], |
|
|
158 |
exp_biomarkertmle, |
|
|
159 |
W = W, |
|
|
160 |
A = A, |
|
|
161 |
g_lib = g_lib, |
|
|
162 |
Q_lib = Q_lib, |
|
|
163 |
cv_folds = cv_folds, |
|
|
164 |
... |
|
|
165 |
) |
|
|
166 |
} |
|
|
167 |
biomarkertmle_params <- do.call(c, lapply(biomarkertmle_out, `[[`, "param")) |
|
|
168 |
biomarkertmle_eifs <- do.call( |
|
|
169 |
cbind.data.frame, |
|
|
170 |
lapply(biomarkertmle_out, `[[`, "eif") |
|
|
171 |
) |
|
|
172 |
|
|
|
173 |
biotmle@ateOut <- as.numeric(biomarkertmle_params) |
|
|
174 |
if (!ngscounts) { |
|
|
175 |
biomarker_eifs <- t(as.matrix(biomarkertmle_eifs)) |
|
|
176 |
colnames(biomarker_eifs) <- colnames(se) |
|
|
177 |
biotmle@tmleOut <- tibble::as_tibble( |
|
|
178 |
biomarker_eifs, |
|
|
179 |
.name_repair = "minimal" |
|
|
180 |
) |
|
|
181 |
} else { |
|
|
182 |
voom_out$E <- t(as.matrix(biomarkertmle_eifs)) |
|
|
183 |
biotmle@tmleOut <- voom_out |
|
|
184 |
} |
|
|
185 |
return(biotmle) |
|
|
186 |
} |
|
|
187 |
|
|
|
188 |
############################################################################### |
|
|
189 |
|
|
|
190 |
#' TMLE procedure using ATE for Biomarker Identication from Exposure |
|
|
191 |
#' |
|
|
192 |
#' This function performs influence curve-based estimation of the effect of an |
|
|
193 |
#' exposure on biological expression values associated with a given biomarker, |
|
|
194 |
#' controlling for a user-specified set of baseline covariates. |
|
|
195 |
#' |
|
|
196 |
#' @param Y A \code{numeric} vector of expression values for a given biomarker. |
|
|
197 |
#' @param A A \code{numeric} vector of discretized exposure vector (e.g., from |
|
|
198 |
#' a design matrix whose effect on expression values is of interest. |
|
|
199 |
#' @param W A \code{Matrix} of \code{numeric} values corresponding to baseline |
|
|
200 |
#' covariates to be marginalized over in the estimation process. |
|
|
201 |
#' @param g_lib A \code{character} vector identifying the library of learning |
|
|
202 |
#' algorithms to be used in fitting the propensity score P[A = a | W]. |
|
|
203 |
#' @param Q_lib A \code{character} vector identifying the library of learning |
|
|
204 |
#' algorithms to be used in fitting the outcome regression E[Y | A, W]. |
|
|
205 |
#' @param cv_folds A \code{numeric} scalar indicating how many folds to use in |
|
|
206 |
#' performing targeted minimum loss estimation. Cross-validated estimates are |
|
|
207 |
#' more robust, allowing relaxing of theoretical conditions and construction |
|
|
208 |
#' of conservative variance estimates. |
|
|
209 |
#' @param ... Additional arguments passed to \code{\link[drtmle]{drtmle}} in |
|
|
210 |
#' computing the targeted minimum loss estimator of the average treatment |
|
|
211 |
#' effect. |
|
|
212 |
#' |
|
|
213 |
#' @importFrom assertthat assert_that |
|
|
214 |
#' @importFrom drtmle drtmle |
|
|
215 |
#' |
|
|
216 |
#' @return TMLE-based estimate of the relationship between biomarker expression |
|
|
217 |
#' and changes in an exposure variable, computed iteratively and saved in the |
|
|
218 |
#' \code{tmleOut} slot in a \code{biotmle} object. |
|
|
219 |
exp_biomarkertmle <- function(Y, |
|
|
220 |
A, |
|
|
221 |
W, |
|
|
222 |
g_lib, |
|
|
223 |
Q_lib, |
|
|
224 |
cv_folds, |
|
|
225 |
...) { |
|
|
226 |
# check the case that Y is passed in as a column of a data.frame |
|
|
227 |
if (any(class(Y) == "data.frame")) Y <- as.numeric(unlist(Y[, 1])) |
|
|
228 |
if (any(class(A) == "data.frame")) A <- as.numeric(unlist(A[, 1])) |
|
|
229 |
assertthat::assert_that(length(unique(A)) > 1) |
|
|
230 |
|
|
|
231 |
# fit standard (possibly CV) TML estimator (n.b., guard = NULL) |
|
|
232 |
a_0 <- sort(unique(A[!is.na(A)])) |
|
|
233 |
suppressWarnings( |
|
|
234 |
tmle_fit <- drtmle::drtmle( |
|
|
235 |
Y = Y, |
|
|
236 |
A = A, |
|
|
237 |
W = W, |
|
|
238 |
a_0 = a_0, |
|
|
239 |
SL_g = g_lib, |
|
|
240 |
SL_Q = Q_lib, |
|
|
241 |
cvFolds = cv_folds, |
|
|
242 |
stratify = TRUE, |
|
|
243 |
guard = NULL, |
|
|
244 |
parallel = FALSE, |
|
|
245 |
use_future = FALSE, |
|
|
246 |
... |
|
|
247 |
) |
|
|
248 |
) |
|
|
249 |
|
|
|
250 |
# compute ATE and estimated EIF by delta method |
|
|
251 |
ate_tmle <- tmle_fit$tmle$est[seq_along(a_0)[-1]] - tmle_fit$tmle$est[1] |
|
|
252 |
eif_tmle_delta <- tmle_fit$ic$ic[, seq_along(a_0)[-1]] - tmle_fit$ic$ic[, 1] |
|
|
253 |
|
|
|
254 |
# return only highest contrast (e.g., a[1] v a[5]) if many contrasts |
|
|
255 |
if (!is.vector(eif_tmle_delta)) { |
|
|
256 |
param_out <- ate_tmle[length(ate_tmle)] |
|
|
257 |
eif_out <- eif_tmle_delta[, ncol(eif_tmle_delta)] + |
|
|
258 |
ate_tmle[length(ate_tmle)] |
|
|
259 |
} else { |
|
|
260 |
param_out <- ate_tmle |
|
|
261 |
eif_out <- eif_tmle_delta + ate_tmle |
|
|
262 |
} |
|
|
263 |
assertthat::assert_that(is.vector(eif_out)) |
|
|
264 |
|
|
|
265 |
# output |
|
|
266 |
out <- list(param = param_out, eif = eif_out) |
|
|
267 |
return(out) |
|
|
268 |
} |