[fbf06f]: / partyMod / src / mvt.f

Download this file

1517 lines (1513 with data), 57.5 kB

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
*
* $Id$
*
SUBROUTINE MVTDST( N, NU, LOWER, UPPER, INFIN, CORREL, DELTA,
& MAXPTS, ABSEPS, RELEPS, ERROR, VALUE, INFORM )
*
* A subroutine for computing non-central multivariate t probabilities.
* This subroutine uses an algorithm (QRSVN) described in the paper
* "Comparison of Methods for the Computation of Multivariate
* t-Probabilities", by Alan Genz and Frank Bretz
* J. Comp. Graph. Stat. 11 (2002), pp. 950-971.
*
* Alan Genz
* Department of Mathematics
* Washington State University
* Pullman, WA 99164-3113
* Email : AlanGenz@wsu.edu
*
* Original source available from
* http://www.math.wsu.edu/faculty/genz/software/fort77/mvtdstpack.f
*
* This is version 28/05/2013
*
* Parameters
*
* N INTEGER, the number of variables.
* NU INTEGER, the number of degrees of freedom.
* If NU < 1, then an MVN probability is computed.
* LOWER DOUBLE PRECISION, array of lower integration limits.
* UPPER DOUBLE PRECISION, array of upper integration limits.
* INFIN INTEGER, array of integration limits flags:
* if INFIN(I) < 0, Ith limits are (-infinity, infinity);
* if INFIN(I) = 0, Ith limits are (-infinity, UPPER(I)];
* if INFIN(I) = 1, Ith limits are [LOWER(I), infinity);
* if INFIN(I) = 2, Ith limits are [LOWER(I), UPPER(I)].
* CORREL DOUBLE PRECISION, array of correlation coefficients;
* the correlation coefficient in row I column J of the
* correlation matrixshould be stored in
* CORREL( J + ((I-2)*(I-1))/2 ), for J < I.
* The correlation matrix must be positive semi-definite.
* DELTA DOUBLE PRECISION, array of non-centrality parameters.
* MAXPTS INTEGER, maximum number of function values allowed. This
* parameter can be used to limit the time. A sensible
* strategy is to start with MAXPTS = 1000*N, and then
* increase MAXPTS if ERROR is too large.
* ABSEPS DOUBLE PRECISION absolute error tolerance.
* RELEPS DOUBLE PRECISION relative error tolerance.
* ERROR DOUBLE PRECISION estimated absolute error,
* with 99% confidence level.
* VALUE DOUBLE PRECISION estimated value for the integral
* INFORM INTEGER, termination status parameter:
* if INFORM = 0, normal completion with ERROR < EPS;
* if INFORM = 1, completion with ERROR > EPS and MAXPTS
* function vaules used; increase MAXPTS to
* decrease ERROR;
* if INFORM = 2, N > 1000 or N < 1.
* if INFORM = 3, correlation matrix not positive semi-definite.
*
EXTERNAL MVSUBR
INTEGER N, ND, NU, INFIN(*), MAXPTS, INFORM, IVLS
DOUBLE PRECISION CORREL(*), LOWER(*), UPPER(*), DELTA(*), RELEPS,
& ABSEPS, ERROR, VALUE, E(1), V(1)
COMMON /PTBLCK/IVLS
IVLS = 0
IF ( N .GT. 1000 .OR. N .LT. 1 ) THEN
VALUE = 0
ERROR = 1
INFORM = 2
ELSE
CALL MVINTS( N, NU, CORREL, LOWER, UPPER, DELTA, INFIN,
& ND, VALUE, ERROR, INFORM )
IF ( INFORM .EQ. 0 .AND. ND .GT. 0 ) THEN
*
* Call the lattice rule integration subroutine
*
CALL MVKBRV( ND, IVLS, MAXPTS, 1, MVSUBR, ABSEPS, RELEPS,
& E(1), V, INFORM )
ERROR = E(1)
VALUE = V(1)
ENDIF
ENDIF
END
*
SUBROUTINE MVSUBR( N, W, NF, F )
*
* Integrand subroutine
*
INTEGER N, NF, NUIN, INFIN(*), NL
DOUBLE PRECISION W(*),F(*), LOWER(*),UPPER(*), CORREL(*), DELTA(*)
PARAMETER ( NL = 1000 )
INTEGER INFI(NL), NU, ND, INFORM, NY
DOUBLE PRECISION COV(NL*(NL+1)/2), A(NL), B(NL), DL(NL), Y(NL)
DOUBLE PRECISION MVCHNV, SNU, R, VL, ER, DI, EI
SAVE NU, SNU, INFI, A, B, DL, COV
IF ( NU .LE. 0 ) THEN
R = 1
CALL MVVLSB( N+1, W, R, DL,INFI,A,B,COV, Y, DI,EI, NY, F(1) )
ELSE
R = MVCHNV( NU, W(N) )/SNU
CALL MVVLSB( N , W, R, DL,INFI,A,B,COV, Y, DI,EI, NY, F(1) )
END IF
RETURN
*
* Entry point for intialization.
*
ENTRY MVINTS( N, NUIN, CORREL, LOWER, UPPER, DELTA, INFIN,
& ND, VL, ER, INFORM )
*
* Initialization and computation of covariance Cholesky factor.
*
CALL MVSORT( N, LOWER, UPPER, DELTA, CORREL, INFIN, Y, .TRUE.,
& ND, A, B, DL, COV, INFI, INFORM )
NU = NUIN
CALL MVSPCL( ND, NU, A, B, DL, COV, INFI, SNU, VL, ER, INFORM )
END
*
SUBROUTINE MVSPCL( ND, NU, A,B,DL, COV, INFI, SNU, VL,ER, INFORM )
*
* Special cases subroutine
*
DOUBLE PRECISION COV(*), A(*), B(*), DL(*), SNU, R, VL, ER
INTEGER ND, NU, INFI(*), INFORM
DOUBLE PRECISION MVBVT, MVSTDT
IF ( INFORM .GT. 0 ) THEN
VL = 0
ER = 1
ELSE
*
* Special cases
*
IF ( ND .EQ. 0 ) THEN
ER = 0
* Code added to fix ND = 0 bug, 24/03/2009 ->
VL = 1
* <- Code added to fix ND = 0 bug, 24/03/2009
ELSE IF ( ND.EQ.1 .AND. ( NU.LT.1 .OR. ABS(DL(1)).EQ.0 ) ) THEN
*
* 1-d case for normal or central t
*
VL = 1
IF ( INFI(1) .NE. 1 ) VL = MVSTDT( NU, B(1) - DL(1) )
IF ( INFI(1) .NE. 0 ) VL = VL - MVSTDT( NU, A(1) - DL(1) )
IF ( VL .LT. 0 ) VL = 0
ER = 2D-16
ND = 0
ELSE IF ( ND .EQ. 2 .AND.
& ( NU .LT. 1 .OR. ABS(DL(1))+ABS(DL(2)) .EQ. 0 ) ) THEN
*
* 2-d case for normal or central t
*
IF ( INFI(1) .NE. 0 ) A(1) = A(1) - DL(1)
IF ( INFI(1) .NE. 1 ) B(1) = B(1) - DL(1)
IF ( INFI(2) .NE. 0 ) A(2) = A(2) - DL(2)
IF ( INFI(2) .NE. 1 ) B(2) = B(2) - DL(2)
IF ( ABS( COV(3) ) .GT. 0 ) THEN
*
* 2-d nonsingular case
*
R = SQRT( 1 + COV(2)**2 )
IF ( INFI(2) .NE. 0 ) A(2) = A(2)/R
IF ( INFI(2) .NE. 1 ) B(2) = B(2)/R
COV(2) = COV(2)/R
VL = MVBVT( NU, A, B, INFI, COV(2) )
ER = 1D-15
ELSE
*
* 2-d singular case
*
IF ( INFI(1) .NE. 0 ) THEN
IF ( INFI(2) .NE. 0 ) A(1) = MAX( A(1), A(2) )
ELSE
IF ( INFI(2) .NE. 0 ) A(1) = A(2)
END IF
IF ( INFI(1) .NE. 1 ) THEN
IF ( INFI(2) .NE. 1 ) B(1) = MIN( B(1), B(2) )
ELSE
IF ( INFI(2) .NE. 1 ) B(1) = B(2)
END IF
IF ( INFI(1) .NE. INFI(2) ) INFI(1) = 2
VL = 1
* A(1), B(1) Bug Fixed, 28/05/2013
IF ( INFI(1) .NE. 1 ) VL = MVSTDT( NU, B(1) )
IF ( INFI(1) .NE. 0 ) VL = VL - MVSTDT( NU, A(1) )
IF ( VL .LT. 0 ) VL = 0
ER = 2D-16
END IF
ND = 0
ELSE
IF ( NU .GT. 0 ) THEN
SNU = SQRT( DBLE(NU) )
ELSE
ND = ND - 1
END IF
END IF
END IF
END
*
SUBROUTINE MVVLSB( N,W,R,DL,INFI, A,B,COV, Y, DI,EI, ND, VALUE )
*
* Integrand subroutine
*
INTEGER N, INFI(*), ND
DOUBLE PRECISION W(*), R, DL(*), A(*), B(*), COV(*), Y(*)
INTEGER I, J, IJ, INFA, INFB
DOUBLE PRECISION SUM, AI, BI, DI, EI, MVPHNV, VALUE
VALUE = 1
INFA = 0
INFB = 0
ND = 0
IJ = 0
DO I = 1, N
SUM = DL(I)
DO J = 1, I-1
IJ = IJ + 1
IF ( J .LE. ND ) SUM = SUM + COV(IJ)*Y(J)
END DO
IF ( INFI(I) .NE. 0 ) THEN
IF ( INFA .EQ. 1 ) THEN
AI = MAX( AI, R*A(I) - SUM )
ELSE
AI = R*A(I) - SUM
INFA = 1
END IF
END IF
IF ( INFI(I) .NE. 1 ) THEN
IF ( INFB .EQ. 1 ) THEN
BI = MIN( BI, R*B(I) - SUM )
ELSE
BI = R*B(I) - SUM
INFB = 1
END IF
END IF
IJ = IJ + 1
IF ( I .EQ. N .OR. COV(IJ+ND+2) .GT. 0 ) THEN
CALL MVLIMS( AI, BI, INFA + INFA + INFB - 1, DI, EI )
IF ( DI .GE. EI ) THEN
VALUE = 0
RETURN
ELSE
VALUE = VALUE*( EI - DI )
ND = ND + 1
IF ( I .LT. N ) Y(ND) = MVPHNV( DI + W(ND)*( EI - DI ) )
INFA = 0
INFB = 0
END IF
END IF
END DO
END
*
SUBROUTINE MVSORT( N, LOWER, UPPER, DELTA, CORREL, INFIN, Y,PIVOT,
& ND, A, B, DL, COV, INFI, INFORM )
*
* Subroutine to sort integration limits and determine Cholesky factor.
*
INTEGER N, ND, INFIN(*), INFI(*), INFORM
LOGICAL PIVOT
DOUBLE PRECISION A(*), B(*), DL(*), COV(*),
& LOWER(*), UPPER(*), DELTA(*), CORREL(*), Y(*)
INTEGER I, J, K, L, M, II, IJ, IL, JL, JMIN
DOUBLE PRECISION SUMSQ, AJ, BJ, SUM, EPS, EPSI, D, E
DOUBLE PRECISION CVDIAG, AMIN, BMIN, DEMIN, MVTDNS
PARAMETER ( EPS = 1D-10 )
INFORM = 0
IJ = 0
II = 0
ND = N
DO I = 1, N
A(I) = 0
B(I) = 0
DL(I) = 0
INFI(I) = INFIN(I)
IF ( INFI(I) .LT. 0 ) THEN
ND = ND - 1
ELSE
IF ( INFI(I) .NE. 0 ) A(I) = LOWER(I)
IF ( INFI(I) .NE. 1 ) B(I) = UPPER(I)
DL(I) = DELTA(I)
ENDIF
DO J = 1, I-1
IJ = IJ + 1
II = II + 1
COV(IJ) = CORREL(II)
END DO
IJ = IJ + 1
COV(IJ) = 1
END DO
*
* First move any doubly infinite limits to innermost positions.
*
IF ( ND .GT. 0 ) THEN
DO I = N, ND + 1, -1
IF ( INFI(I) .GE. 0 ) THEN
DO J = 1, I-1
IF ( INFI(J) .LT. 0 ) THEN
CALL MVSWAP( J, I, A, B, DL, INFI, N, COV )
GO TO 10
ENDIF
END DO
ENDIF
10 CONTINUE
END DO
*
* Sort remaining limits and determine Cholesky factor.
*
II = 0
JL = ND
DO I = 1, ND
*
* Determine the integration limits for variable with minimum
* expected probability and interchange that variable with Ith.
*
DEMIN = 1
JMIN = I
CVDIAG = 0
IJ = II
EPSI = EPS*I
IF ( .NOT. PIVOT ) JL = I
DO J = I, JL
IF ( COV(IJ+J) .GT. EPSI ) THEN
SUMSQ = SQRT( COV(IJ+J) )
SUM = DL(J)
DO K = 1, I-1
SUM = SUM + COV(IJ+K)*Y(K)
END DO
AJ = ( A(J) - SUM )/SUMSQ
BJ = ( B(J) - SUM )/SUMSQ
CALL MVLIMS( AJ, BJ, INFI(J), D, E )
IF ( DEMIN .GE. E - D ) THEN
JMIN = J
AMIN = AJ
BMIN = BJ
DEMIN = E - D
CVDIAG = SUMSQ
ENDIF
ENDIF
IJ = IJ + J
END DO
IF ( JMIN .GT. I ) THEN
CALL MVSWAP( I, JMIN, A, B, DL, INFI, N, COV )
END IF
IF ( COV(II+I) .LT. -EPSI ) THEN
INFORM = 3
END IF
COV(II+I) = CVDIAG
*
* Compute Ith column of Cholesky factor.
* Compute expected value for Ith integration variable and
* scale Ith covariance matrix row and limits.
*
IF ( CVDIAG .GT. 0 ) THEN
IL = II + I
DO L = I+1, ND
COV(IL+I) = COV(IL+I)/CVDIAG
IJ = II + I
DO J = I+1, L
COV(IL+J) = COV(IL+J) - COV(IL+I)*COV(IJ+I)
IJ = IJ + J
END DO
IL = IL + L
END DO
*
* Expected Y = -( density(b) - density(a) )/( b - a )
*
IF ( DEMIN .GT. EPSI ) THEN
Y(I) = 0
IF ( INFI(I) .NE. 0 ) Y(I) = MVTDNS( 0, AMIN )
IF ( INFI(I) .NE. 1 ) Y(I) = Y(I) - MVTDNS( 0, BMIN )
Y(I) = Y(I)/DEMIN
ELSE
IF ( INFI(I) .EQ. 0 ) Y(I) = BMIN
IF ( INFI(I) .EQ. 1 ) Y(I) = AMIN
IF ( INFI(I) .EQ. 2 ) Y(I) = ( AMIN + BMIN )/2
END IF
DO J = 1, I
II = II + 1
COV(II) = COV(II)/CVDIAG
END DO
A(I) = A(I)/CVDIAG
B(I) = B(I)/CVDIAG
DL(I) = DL(I)/CVDIAG
ELSE
IL = II + I
DO L = I+1, ND
COV(IL+I) = 0
IL = IL + L
END DO
*
* If the covariance matrix diagonal entry is zero,
* permute limits and rows, if necessary.
*
*
DO J = I-1, 1, -1
IF ( ABS( COV(II+J) ) .GT. EPSI ) THEN
A(I) = A(I)/COV(II+J)
B(I) = B(I)/COV(II+J)
DL(I) = DL(I)/COV(II+J)
IF ( COV(II+J) .LT. 0 ) THEN
CALL MVSSWP( A(I), B(I) )
IF ( INFI(I) .NE. 2 ) INFI(I) = 1 - INFI(I)
END IF
DO L = 1, J
COV(II+L) = COV(II+L)/COV(II+J)
END DO
DO L = J+1, I-1
IF( COV((L-1)*L/2+J+1) .GT. 0 ) THEN
IJ = II
DO K = I-1, L, -1
DO M = 1, K
CALL MVSSWP( COV(IJ-K+M), COV(IJ+M) )
END DO
CALL MVSSWP( A(K), A(K+1) )
CALL MVSSWP( B(K), B(K+1) )
CALL MVSSWP( DL(K), DL(K+1) )
M = INFI(K)
INFI(K) = INFI(K+1)
INFI(K+1) = M
IJ = IJ - K
END DO
GO TO 20
END IF
END DO
GO TO 20
END IF
COV(II+J) = 0
END DO
20 II = II + I
Y(I) = 0
END IF
END DO
ENDIF
END
*
DOUBLE PRECISION FUNCTION MVTDNS( NU, X )
INTEGER NU, I
DOUBLE PRECISION X, PROD, PI, SQTWPI
PARAMETER ( PI = 3.141592653589793D0 )
PARAMETER ( SQTWPI = 2.506628274631001D0 )
MVTDNS = 0
IF ( NU .GT. 0 ) THEN
PROD = 1/SQRT( DBLE(NU) )
DO I = NU - 2, 1, -2
PROD = PROD*( I + 1 )/I
END DO
IF ( MOD( NU, 2 ) .EQ. 0 ) THEN
PROD = PROD/2
ELSE
PROD = PROD/PI
END IF
MVTDNS = PROD/SQRT( 1 + X*X/NU )**( NU + 1 )
ELSE
IF ( ABS(X) .LT. 10 ) MVTDNS = EXP( -X*X/2 )/SQTWPI
END IF
END
*
SUBROUTINE MVLIMS( A, B, INFIN, LOWER, UPPER )
DOUBLE PRECISION A, B, LOWER, UPPER, MVPHI
INTEGER INFIN
LOWER = 0
UPPER = 1
IF ( INFIN .GE. 0 ) THEN
IF ( INFIN .NE. 0 ) LOWER = MVPHI(A)
IF ( INFIN .NE. 1 ) UPPER = MVPHI(B)
ENDIF
UPPER = MAX( UPPER, LOWER )
END
*
SUBROUTINE MVSSWP( X, Y )
DOUBLE PRECISION X, Y, T
T = X
X = Y
Y = T
END
*
SUBROUTINE MVSWAP( P, Q, A, B, D, INFIN, N, C )
*
* Swaps rows and columns P and Q in situ, with P <= Q.
*
DOUBLE PRECISION A(*), B(*), C(*), D(*)
INTEGER INFIN(*), P, Q, N, I, J, II, JJ
CALL MVSSWP( A(P), A(Q) )
CALL MVSSWP( B(P), B(Q) )
CALL MVSSWP( D(P), D(Q) )
J = INFIN(P)
INFIN(P) = INFIN(Q)
INFIN(Q) = J
JJ = ( P*( P - 1 ) )/2
II = ( Q*( Q - 1 ) )/2
CALL MVSSWP( C(JJ+P), C(II+Q) )
DO J = 1, P-1
CALL MVSSWP( C(JJ+J), C(II+J) )
END DO
JJ = JJ + P
DO I = P+1, Q-1
CALL MVSSWP( C(JJ+P), C(II+I) )
JJ = JJ + I
END DO
II = II + Q
DO I = Q+1, N
CALL MVSSWP( C(II+P), C(II+Q) )
II = II + I
END DO
END
*
DOUBLE PRECISION FUNCTION MVPHI(Z)
*
* Normal distribution probabilities accurate to 1d-15.
* Reference: J.L. Schonfelder, Math Comp 32(1978), pp 1232-1240.
*
INTEGER I, IM
DOUBLE PRECISION A(0:43), BM, B, BP, P, RTWO, T, XA, Z
PARAMETER( RTWO = 1.414213562373095048801688724209D0, IM = 24 )
SAVE A
DATA ( A(I), I = 0, 43 )/
& 6.10143081923200417926465815756D-1,
& -4.34841272712577471828182820888D-1,
& 1.76351193643605501125840298123D-1,
& -6.0710795609249414860051215825D-2,
& 1.7712068995694114486147141191D-2,
& -4.321119385567293818599864968D-3,
& 8.54216676887098678819832055D-4,
& -1.27155090609162742628893940D-4,
& 1.1248167243671189468847072D-5, 3.13063885421820972630152D-7,
& -2.70988068537762022009086D-7, 3.0737622701407688440959D-8,
& 2.515620384817622937314D-9, -1.028929921320319127590D-9,
& 2.9944052119949939363D-11, 2.6051789687266936290D-11,
& -2.634839924171969386D-12, -6.43404509890636443D-13,
& 1.12457401801663447D-13, 1.7281533389986098D-14,
& -4.264101694942375D-15, -5.45371977880191D-16,
& 1.58697607761671D-16, 2.0899837844334D-17,
& -5.900526869409D-18, -9.41893387554D-19, 2.14977356470D-19,
& 4.6660985008D-20, -7.243011862D-21, -2.387966824D-21,
& 1.91177535D-22, 1.20482568D-22, -6.72377D-25, -5.747997D-24,
& -4.28493D-25, 2.44856D-25, 4.3793D-26, -8.151D-27, -3.089D-27,
& 9.3D-29, 1.74D-28, 1.6D-29, -8.0D-30, -2.0D-30 /
*
XA = ABS(Z)/RTWO
IF ( XA .GT. 100 ) THEN
P = 0
ELSE
T = ( 8*XA - 30 ) / ( 4*XA + 15 )
BM = 0
B = 0
DO I = IM, 0, -1
BP = B
B = BM
BM = T*B - BP + A(I)
END DO
P = EXP( -XA*XA )*( BM - BP )/4
END IF
IF ( Z .GT. 0 ) P = 1 - P
MVPHI = P
END
*
DOUBLE PRECISION FUNCTION MVPHNV(P)
*
* ALGORITHM AS241 APPL. STATIST. (1988) VOL. 37, NO. 3
*
* Produces the normal deviate Z corresponding to a given lower
* tail area of P.
*
* The hash sums below are the sums of the mantissas of the
* coefficients. They are included for use in checking
* transcription.
*
DOUBLE PRECISION SPLIT1, SPLIT2, CONST1, CONST2,
* A0, A1, A2, A3, A4, A5, A6, A7, B1, B2, B3, B4, B5, B6, B7,
* C0, C1, C2, C3, C4, C5, C6, C7, D1, D2, D3, D4, D5, D6, D7,
* E0, E1, E2, E3, E4, E5, E6, E7, F1, F2, F3, F4, F5, F6, F7,
* P, Q, R
PARAMETER ( SPLIT1 = 0.425, SPLIT2 = 5,
* CONST1 = 0.180625D0, CONST2 = 1.6D0 )
*
* Coefficients for P close to 0.5
*
PARAMETER (
* A0 = 3.38713 28727 96366 6080D0,
* A1 = 1.33141 66789 17843 7745D+2,
* A2 = 1.97159 09503 06551 4427D+3,
* A3 = 1.37316 93765 50946 1125D+4,
* A4 = 4.59219 53931 54987 1457D+4,
* A5 = 6.72657 70927 00870 0853D+4,
* A6 = 3.34305 75583 58812 8105D+4,
* A7 = 2.50908 09287 30122 6727D+3,
* B1 = 4.23133 30701 60091 1252D+1,
* B2 = 6.87187 00749 20579 0830D+2,
* B3 = 5.39419 60214 24751 1077D+3,
* B4 = 2.12137 94301 58659 5867D+4,
* B5 = 3.93078 95800 09271 0610D+4,
* B6 = 2.87290 85735 72194 2674D+4,
* B7 = 5.22649 52788 52854 5610D+3 )
* HASH SUM AB 55.88319 28806 14901 4439
*
* Coefficients for P not close to 0, 0.5 or 1.
*
PARAMETER (
* C0 = 1.42343 71107 49683 57734D0,
* C1 = 4.63033 78461 56545 29590D0,
* C2 = 5.76949 72214 60691 40550D0,
* C3 = 3.64784 83247 63204 60504D0,
* C4 = 1.27045 82524 52368 38258D0,
* C5 = 2.41780 72517 74506 11770D-1,
* C6 = 2.27238 44989 26918 45833D-2,
* C7 = 7.74545 01427 83414 07640D-4,
* D1 = 2.05319 16266 37758 82187D0,
* D2 = 1.67638 48301 83803 84940D0,
* D3 = 6.89767 33498 51000 04550D-1,
* D4 = 1.48103 97642 74800 74590D-1,
* D5 = 1.51986 66563 61645 71966D-2,
* D6 = 5.47593 80849 95344 94600D-4,
* D7 = 1.05075 00716 44416 84324D-9 )
* HASH SUM CD 49.33206 50330 16102 89036
*
* Coefficients for P near 0 or 1.
*
PARAMETER (
* E0 = 6.65790 46435 01103 77720D0,
* E1 = 5.46378 49111 64114 36990D0,
* E2 = 1.78482 65399 17291 33580D0,
* E3 = 2.96560 57182 85048 91230D-1,
* E4 = 2.65321 89526 57612 30930D-2,
* E5 = 1.24266 09473 88078 43860D-3,
* E6 = 2.71155 55687 43487 57815D-5,
* E7 = 2.01033 43992 92288 13265D-7,
* F1 = 5.99832 20655 58879 37690D-1,
* F2 = 1.36929 88092 27358 05310D-1,
* F3 = 1.48753 61290 85061 48525D-2,
* F4 = 7.86869 13114 56132 59100D-4,
* F5 = 1.84631 83175 10054 68180D-5,
* F6 = 1.42151 17583 16445 88870D-7,
* F7 = 2.04426 31033 89939 78564D-15 )
* HASH SUM EF 47.52583 31754 92896 71629
*
Q = ( 2*P - 1 )/2
IF ( ABS(Q) .LE. SPLIT1 ) THEN
R = CONST1 - Q*Q
MVPHNV = Q*( ( ( ((((A7*R + A6)*R + A5)*R + A4)*R + A3)
* *R + A2 )*R + A1 )*R + A0 )
* /( ( ( ((((B7*R + B6)*R + B5)*R + B4)*R + B3)
* *R + B2 )*R + B1 )*R + 1 )
ELSE
R = MIN( P, 1 - P )
IF ( R .GT. 0 ) THEN
R = SQRT( -LOG(R) )
IF ( R .LE. SPLIT2 ) THEN
R = R - CONST2
MVPHNV = ( ( ( ((((C7*R + C6)*R + C5)*R + C4)*R + C3)
* *R + C2 )*R + C1 )*R + C0 )
* /( ( ( ((((D7*R + D6)*R + D5)*R + D4)*R + D3)
* *R + D2 )*R + D1 )*R + 1 )
ELSE
R = R - SPLIT2
MVPHNV = ( ( ( ((((E7*R + E6)*R + E5)*R + E4)*R + E3)
* *R + E2 )*R + E1 )*R + E0 )
* /( ( ( ((((F7*R + F6)*R + F5)*R + F4)*R + F3)
* *R + F2 )*R + F1 )*R + 1 )
END IF
ELSE
MVPHNV = 9
END IF
IF ( Q .LT. 0 ) MVPHNV = - MVPHNV
END IF
END
DOUBLE PRECISION FUNCTION MVBVN( LOWER, UPPER, INFIN, CORREL )
*
* A function for computing bivariate normal probabilities.
*
* Parameters
*
* LOWER REAL, array of lower integration limits.
* UPPER REAL, array of upper integration limits.
* INFIN INTEGER, array of integration limits flags:
* if INFIN(I) = 0, Ith limits are (-infinity, UPPER(I)];
* if INFIN(I) = 1, Ith limits are [LOWER(I), infinity);
* if INFIN(I) = 2, Ith limits are [LOWER(I), UPPER(I)].
* CORREL REAL, correlation coefficient.
*
DOUBLE PRECISION LOWER(*), UPPER(*), CORREL, MVBVU
INTEGER INFIN(*)
IF ( INFIN(1) .EQ. 2 .AND. INFIN(2) .EQ. 2 ) THEN
MVBVN = MVBVU ( LOWER(1), LOWER(2), CORREL )
+ - MVBVU ( UPPER(1), LOWER(2), CORREL )
+ - MVBVU ( LOWER(1), UPPER(2), CORREL )
+ + MVBVU ( UPPER(1), UPPER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 2 .AND. INFIN(2) .EQ. 1 ) THEN
MVBVN = MVBVU ( LOWER(1), LOWER(2), CORREL )
+ - MVBVU ( UPPER(1), LOWER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 1 .AND. INFIN(2) .EQ. 2 ) THEN
MVBVN = MVBVU ( LOWER(1), LOWER(2), CORREL )
+ - MVBVU ( LOWER(1), UPPER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 2 .AND. INFIN(2) .EQ. 0 ) THEN
MVBVN = MVBVU ( -UPPER(1), -UPPER(2), CORREL )
+ - MVBVU ( -LOWER(1), -UPPER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 0 .AND. INFIN(2) .EQ. 2 ) THEN
MVBVN = MVBVU ( -UPPER(1), -UPPER(2), CORREL )
+ - MVBVU ( -UPPER(1), -LOWER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 1 .AND. INFIN(2) .EQ. 0 ) THEN
MVBVN = MVBVU ( LOWER(1), -UPPER(2), -CORREL )
ELSE IF ( INFIN(1) .EQ. 0 .AND. INFIN(2) .EQ. 1 ) THEN
MVBVN = MVBVU ( -UPPER(1), LOWER(2), -CORREL )
ELSE IF ( INFIN(1) .EQ. 1 .AND. INFIN(2) .EQ. 1 ) THEN
MVBVN = MVBVU ( LOWER(1), LOWER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 0 .AND. INFIN(2) .EQ. 0 ) THEN
MVBVN = MVBVU ( -UPPER(1), -UPPER(2), CORREL )
ELSE
MVBVN = 1
END IF
END
DOUBLE PRECISION FUNCTION MVBVU( SH, SK, R )
*
* A function for computing bivariate normal probabilities;
* developed using
* Drezner, Z. and Wesolowsky, G. O. (1989),
* On the Computation of the Bivariate Normal Integral,
* J. Stat. Comput. Simul.. 35 pp. 101-107.
* with extensive modications for double precisions by
* Alan Genz and Yihong Ge
* Department of Mathematics
* Washington State University
* Pullman, WA 99164-3113
* Email : alangenz@wsu.edu
*
* BVN - calculate the probability that X is larger than SH and Y is
* larger than SK.
*
* Parameters
*
* SH REAL, integration limit
* SK REAL, integration limit
* R REAL, correlation coefficient
* LG INTEGER, number of Gauss Rule Points and Weights
*
DOUBLE PRECISION BVN, SH, SK, R, ZERO, TWOPI
INTEGER I, LG, NG
PARAMETER ( ZERO = 0, TWOPI = 6.283185307179586D0 )
DOUBLE PRECISION X(10,3), W(10,3), AS, A, B, C, D, RS, XS
DOUBLE PRECISION MVPHI, SN, ASR, H, K, BS, HS, HK
SAVE X, W
* Gauss Legendre Points and Weights, N = 6
DATA ( W(I,1), X(I,1), I = 1, 3 ) /
* 0.1713244923791705D+00,-0.9324695142031522D+00,
* 0.3607615730481384D+00,-0.6612093864662647D+00,
* 0.4679139345726904D+00,-0.2386191860831970D+00/
* Gauss Legendre Points and Weights, N = 12
DATA ( W(I,2), X(I,2), I = 1, 6 ) /
* 0.4717533638651177D-01,-0.9815606342467191D+00,
* 0.1069393259953183D+00,-0.9041172563704750D+00,
* 0.1600783285433464D+00,-0.7699026741943050D+00,
* 0.2031674267230659D+00,-0.5873179542866171D+00,
* 0.2334925365383547D+00,-0.3678314989981802D+00,
* 0.2491470458134029D+00,-0.1252334085114692D+00/
* Gauss Legendre Points and Weights, N = 20
DATA ( W(I,3), X(I,3), I = 1, 10 ) /
* 0.1761400713915212D-01,-0.9931285991850949D+00,
* 0.4060142980038694D-01,-0.9639719272779138D+00,
* 0.6267204833410906D-01,-0.9122344282513259D+00,
* 0.8327674157670475D-01,-0.8391169718222188D+00,
* 0.1019301198172404D+00,-0.7463319064601508D+00,
* 0.1181945319615184D+00,-0.6360536807265150D+00,
* 0.1316886384491766D+00,-0.5108670019508271D+00,
* 0.1420961093183821D+00,-0.3737060887154196D+00,
* 0.1491729864726037D+00,-0.2277858511416451D+00,
* 0.1527533871307259D+00,-0.7652652113349733D-01/
IF ( ABS(R) .LT. 0.3 ) THEN
NG = 1
LG = 3
ELSE IF ( ABS(R) .LT. 0.75 ) THEN
NG = 2
LG = 6
ELSE
NG = 3
LG = 10
ENDIF
H = SH
K = SK
HK = H*K
BVN = 0
IF ( ABS(R) .LT. 0.925 ) THEN
HS = ( H*H + K*K )/2
ASR = ASIN(R)
DO I = 1, LG
SN = SIN(ASR*( X(I,NG)+1 )/2)
BVN = BVN + W(I,NG)*EXP( ( SN*HK - HS )/( 1 - SN*SN ) )
SN = SIN(ASR*(-X(I,NG)+1 )/2)
BVN = BVN + W(I,NG)*EXP( ( SN*HK - HS )/( 1 - SN*SN ) )
END DO
BVN = BVN*ASR/(2*TWOPI) + MVPHI(-H)*MVPHI(-K)
ELSE
IF ( R .LT. 0 ) THEN
K = -K
HK = -HK
ENDIF
IF ( ABS(R) .LT. 1 ) THEN
AS = ( 1 - R )*( 1 + R )
A = SQRT(AS)
BS = ( H - K )**2
C = ( 4 - HK )/8
D = ( 12 - HK )/16
BVN = A*EXP( -(BS/AS + HK)/2 )
+ *( 1 - C*(BS - AS)*(1 - D*BS/5)/3 + C*D*AS*AS/5 )
IF ( HK .GT. -160 ) THEN
B = SQRT(BS)
BVN = BVN - EXP(-HK/2)*SQRT(TWOPI)*MVPHI(-B/A)*B
+ *( 1 - C*BS*( 1 - D*BS/5 )/3 )
ENDIF
A = A/2
DO I = 1, LG
XS = ( A*(X(I,NG)+1) )**2
RS = SQRT( 1 - XS )
BVN = BVN + A*W(I,NG)*
+ ( EXP( -BS/(2*XS) - HK/(1+RS) )/RS
+ - EXP( -(BS/XS+HK)/2 )*( 1 + C*XS*( 1 + D*XS ) ) )
XS = AS*(-X(I,NG)+1)**2/4
RS = SQRT( 1 - XS )
BVN = BVN + A*W(I,NG)*EXP( -(BS/XS + HK)/2 )
+ *( EXP( -HK*XS/(2*(1+RS)**2) )/RS
+ - ( 1 + C*XS*( 1 + D*XS ) ) )
END DO
BVN = -BVN/TWOPI
ENDIF
IF ( R .GT. 0 ) THEN
BVN = BVN + MVPHI( -MAX( H, K ) )
ELSE
BVN = -BVN
IF ( K .GT. H ) THEN
IF ( H .LT. 0 ) THEN
BVN = BVN + MVPHI(K) - MVPHI(H)
ELSE
BVN = BVN + MVPHI(-H) - MVPHI(-K)
ENDIF
ENDIF
ENDIF
ENDIF
MVBVU = BVN
END
*
DOUBLE PRECISION FUNCTION MVSTDT( NU, T )
*
* Student t Distribution Function
*
* T
* TSTDNT = C I ( 1 + y*y/NU )**( -(NU+1)/2 ) dy
* NU -INF
*
INTEGER NU, J
DOUBLE PRECISION MVPHI, T, CSTHE, SNTHE, POLYN, TT, TS, RN, PI
PARAMETER ( PI = 3.141592653589793D0 )
IF ( NU .LT. 1 ) THEN
MVSTDT = MVPHI( T )
ELSE IF ( NU .EQ. 1 ) THEN
MVSTDT = ( 1 + 2*ATAN( T )/PI )/2
ELSE IF ( NU .EQ. 2) THEN
MVSTDT = ( 1 + T/SQRT( 2 + T*T ))/2
ELSE
TT = T*T
CSTHE = NU/( NU + TT )
POLYN = 1
DO J = NU - 2, 2, -2
POLYN = 1 + ( J - 1 )*CSTHE*POLYN/J
END DO
IF ( MOD( NU, 2 ) .EQ. 1 ) THEN
RN = NU
TS = T/SQRT(RN)
MVSTDT = ( 1 + 2*( ATAN( TS ) + TS*CSTHE*POLYN )/PI )/2
ELSE
SNTHE = T/SQRT( NU + TT )
MVSTDT = ( 1 + SNTHE*POLYN )/2
END IF
IF ( MVSTDT .LT. 0 ) MVSTDT = 0
ENDIF
END
*
DOUBLE PRECISION FUNCTION MVBVT( NU, LOWER, UPPER, INFIN, CORREL )
*
* A function for computing bivariate normal and t probabilities.
*
* Parameters
*
* NU INTEGER degrees of freedom parameter; NU < 1 gives normal case.
* LOWER REAL, array of lower integration limits.
* UPPER REAL, array of upper integration limits.
* INFIN INTEGER, array of integration limits flags:
* if INFIN(I) = 0, Ith limits are (-infinity, UPPER(I)];
* if INFIN(I) = 1, Ith limits are [LOWER(I), infinity);
* if INFIN(I) = 2, Ith limits are [LOWER(I), UPPER(I)].
* CORREL REAL, correlation coefficient.
*
DOUBLE PRECISION LOWER(*), UPPER(*), CORREL, MVBVN, MVBVTL
INTEGER NU, INFIN(*)
IF ( NU .LT. 1 ) THEN
MVBVT = MVBVN ( LOWER, UPPER, INFIN, CORREL )
ELSE
IF ( INFIN(1) .EQ. 2 .AND. INFIN(2) .EQ. 2 ) THEN
MVBVT = MVBVTL ( NU, UPPER(1), UPPER(2), CORREL )
+ - MVBVTL ( NU, UPPER(1), LOWER(2), CORREL )
+ - MVBVTL ( NU, LOWER(1), UPPER(2), CORREL )
+ + MVBVTL ( NU, LOWER(1), LOWER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 2 .AND. INFIN(2) .EQ. 1 ) THEN
MVBVT = MVBVTL ( NU, -LOWER(1), -LOWER(2), CORREL )
+ - MVBVTL ( NU, -UPPER(1), -LOWER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 1 .AND. INFIN(2) .EQ. 2 ) THEN
MVBVT = MVBVTL ( NU, -LOWER(1), -LOWER(2), CORREL )
+ - MVBVTL ( NU, -LOWER(1), -UPPER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 2 .AND. INFIN(2) .EQ. 0 ) THEN
MVBVT = MVBVTL ( NU, UPPER(1), UPPER(2), CORREL )
+ - MVBVTL ( NU, LOWER(1), UPPER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 0 .AND. INFIN(2) .EQ. 2 ) THEN
MVBVT = MVBVTL ( NU, UPPER(1), UPPER(2), CORREL )
+ - MVBVTL ( NU, UPPER(1), LOWER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 1 .AND. INFIN(2) .EQ. 0 ) THEN
MVBVT = MVBVTL ( NU, -LOWER(1), UPPER(2), -CORREL )
ELSE IF ( INFIN(1) .EQ. 0 .AND. INFIN(2) .EQ. 1 ) THEN
MVBVT = MVBVTL ( NU, UPPER(1), -LOWER(2), -CORREL )
ELSE IF ( INFIN(1) .EQ. 1 .AND. INFIN(2) .EQ. 1 ) THEN
MVBVT = MVBVTL ( NU, -LOWER(1), -LOWER(2), CORREL )
ELSE IF ( INFIN(1) .EQ. 0 .AND. INFIN(2) .EQ. 0 ) THEN
MVBVT = MVBVTL ( NU, UPPER(1), UPPER(2), CORREL )
ELSE
MVBVT = 1
END IF
END IF
END
*
DOUBLE PRECISION FUNCTION MVBVTC( NU, L, U, INFIN, RHO )
*
* A function for computing complementary bivariate normal and t
* probabilities.
*
* Parameters
*
* NU INTEGER degrees of freedom parameter.
* L REAL, array of lower integration limits.
* U REAL, array of upper integration limits.
* INFIN INTEGER, array of integration limits flags:
* if INFIN(1) INFIN(2), then MVBVTC computes
* 0 0 P( X>U(1), Y>U(2) )
* 1 0 P( X<L(1), Y>U(2) )
* 0 1 P( X>U(1), Y<L(2) )
* 1 1 P( X<L(1), Y<L(2) )
* 2 0 P( X>U(1), Y>U(2) ) + P( X<L(1), Y>U(2) )
* 2 1 P( X>U(1), Y<L(2) ) + P( X<L(1), Y<L(2) )
* 0 2 P( X>U(1), Y>U(2) ) + P( X>U(1), Y<L(2) )
* 1 2 P( X<L(1), Y>U(2) ) + P( X<L(1), Y<L(2) )
* 2 2 P( X>U(1), Y<L(2) ) + P( X<L(1), Y<L(2) )
* + P( X>U(1), Y>U(2) ) + P( X<L(1), Y>U(2) )
*
* RHO REAL, correlation coefficient.
*
DOUBLE PRECISION L(*), U(*), LW(2), UP(2), B, RHO, MVBVT
INTEGER I, NU, INFIN(*), INF(2)
*
DO I = 1, 2
IF ( MOD( INFIN(I), 2 ) .EQ. 0 ) THEN
INF(I) = 1
LW(I) = U(I)
ELSE
INF(I) = 0
UP(I) = L(I)
END IF
END DO
B = MVBVT( NU, LW, UP, INF, RHO )
DO I = 1, 2
IF ( INFIN(I) .EQ. 2 ) THEN
INF(I) = 0
UP(I) = L(I)
B = B + MVBVT( NU, LW, UP, INF, RHO )
END IF
END DO
IF ( INFIN(1) .EQ. 2 .AND. INFIN(2) .EQ. 2 ) THEN
INF(1) = 1
LW(1) = U(1)
B = B + MVBVT( NU, LW, UP, INF, RHO )
END IF
MVBVTC = B
END
*
double precision function mvbvtl( nu, dh, dk, r )
*
* a function for computing bivariate t probabilities.
*
* Alan Genz
* Department of Mathematics
* Washington State University
* Pullman, Wa 99164-3113
* Email : alangenz@wsu.edu
*
* this function is based on the method described by
* Dunnett, C.W. and M. Sobel, (1954),
* A bivariate generalization of Student's t-distribution
* with tables for certain special cases,
* Biometrika 41, pp. 153-169.
*
* mvbvtl - calculate the probability that x < dh and y < dk.
*
* parameters
*
* nu number of degrees of freedom
* dh 1st lower integration limit
* dk 2nd lower integration limit
* r correlation coefficient
*
integer nu, j, hs, ks
double precision dh, dk, r
double precision tpi, pi, ors, hrk, krh, bvt, snu
double precision gmph, gmpk, xnkh, xnhk, qhrk, hkn, hpk, hkrn
double precision btnckh, btnchk, btpdkh, btpdhk, one
parameter ( pi = 3.14159265358979323844d0, tpi = 2*pi, one = 1 )
snu = sqrt( dble(nu) )
ors = 1 - r*r
hrk = dh - r*dk
krh = dk - r*dh
if ( abs(hrk) + ors .gt. 0 ) then
xnhk = hrk**2/( hrk**2 + ors*( nu + dk**2 ) )
xnkh = krh**2/( krh**2 + ors*( nu + dh**2 ) )
else
xnhk = 0
xnkh = 0
end if
hs = sign( one, dh - r*dk )
ks = sign( one, dk - r*dh )
if ( mod( nu, 2 ) .eq. 0 ) then
bvt = atan2( sqrt(ors), -r )/tpi
gmph = dh/sqrt( 16*( nu + dh**2 ) )
gmpk = dk/sqrt( 16*( nu + dk**2 ) )
btnckh = 2*atan2( sqrt( xnkh ), sqrt( 1 - xnkh ) )/pi
btpdkh = 2*sqrt( xnkh*( 1 - xnkh ) )/pi
btnchk = 2*atan2( sqrt( xnhk ), sqrt( 1 - xnhk ) )/pi
btpdhk = 2*sqrt( xnhk*( 1 - xnhk ) )/pi
do j = 1, nu/2
bvt = bvt + gmph*( 1 + ks*btnckh )
bvt = bvt + gmpk*( 1 + hs*btnchk )
btnckh = btnckh + btpdkh
btpdkh = 2*j*btpdkh*( 1 - xnkh )/( 2*j + 1 )
btnchk = btnchk + btpdhk
btpdhk = 2*j*btpdhk*( 1 - xnhk )/( 2*j + 1 )
gmph = gmph*( 2*j - 1 )/( 2*j*( 1 + dh**2/nu ) )
gmpk = gmpk*( 2*j - 1 )/( 2*j*( 1 + dk**2/nu ) )
end do
else
qhrk = sqrt( dh**2 + dk**2 - 2*r*dh*dk + nu*ors )
hkrn = dh*dk + r*nu
hkn = dh*dk - nu
hpk = dh + dk
bvt = atan2(-snu*(hkn*qhrk+hpk*hkrn),hkn*hkrn-nu*hpk*qhrk)/tpi
if ( bvt .lt. -1d-15 ) bvt = bvt + 1
gmph = dh/( tpi*snu*( 1 + dh**2/nu ) )
gmpk = dk/( tpi*snu*( 1 + dk**2/nu ) )
btnckh = sqrt( xnkh )
btpdkh = btnckh
btnchk = sqrt( xnhk )
btpdhk = btnchk
do j = 1, ( nu - 1 )/2
bvt = bvt + gmph*( 1 + ks*btnckh )
bvt = bvt + gmpk*( 1 + hs*btnchk )
btpdkh = ( 2*j - 1 )*btpdkh*( 1 - xnkh )/( 2*j )
btnckh = btnckh + btpdkh
btpdhk = ( 2*j - 1 )*btpdhk*( 1 - xnhk )/( 2*j )
btnchk = btnchk + btpdhk
gmph = 2*j*gmph/( ( 2*j + 1 )*( 1 + dh**2/nu ) )
gmpk = 2*j*gmpk/( ( 2*j + 1 )*( 1 + dk**2/nu ) )
end do
end if
mvbvtl = bvt
*
* end mvbvtl
*
end
*
DOUBLE PRECISION FUNCTION MVCHNV( N, P )
*
* MVCHNV
* P = 1 - K I exp(-t*t/2) t**(N-1) dt, for N >= 1.
* N 0
*
INTEGER I, N, NO
DOUBLE PRECISION P, TWO, R, RO, LRP, LKN, MVPHNV, MVCHNC
PARAMETER ( LRP = -.22579135264472743235D0, TWO = 2 )
* LRP = LOG( SQRT( 2/PI ) )
SAVE NO, LKN
DATA NO / 0 /
IF ( N .LE. 1 ) THEN
R = -MVPHNV( P/2 )
ELSE IF ( P .LT. 1 ) THEN
IF ( N .EQ. 2 ) THEN
R = SQRT( -2*LOG(P) )
ELSE
IF ( N .NE. NO ) THEN
NO = N
LKN = 0
DO I = N-2, 2, -2
LKN = LKN - LOG( DBLE(I) )
END DO
IF ( MOD( N, 2 ) .EQ. 1 ) LKN = LKN + LRP
END IF
IF ( N .GE. -5*LOG(1-P)/4 ) THEN
R = TWO/( 9*N )
R = N*( -MVPHNV(P)*SQRT(R) + 1 - R )**3
IF ( R .GT. 2*N+6 ) THEN
R = 2*( LKN - LOG(P) ) + ( N - 2 )*LOG(R)
END IF
ELSE
R = EXP( ( LOG( (1-P)*N ) - LKN )*TWO/N )
END IF
R = SQRT(R)
RO = R
R = MVCHNC( LKN, N, P, R )
IF ( ABS( R - RO ) .GT. 1D-6 ) THEN
RO = R
R = MVCHNC( LKN, N, P, R )
IF ( ABS( R - RO ) .GT. 1D-6 ) R = MVCHNC( LKN, N, P, R )
END IF
END IF
ELSE
R = 0
END IF
MVCHNV = R
END
*
DOUBLE PRECISION FUNCTION MVCHNC( LKN, N, P, R )
*
* Third order Schroeder correction to R for MVCHNV
*
INTEGER I, N
DOUBLE PRECISION P, R, LKN, DF, RR, RN, CHI, MVPHI
DOUBLE PRECISION LRP, TWO, AL, DL, AI, BI, CI, DI, EPS
PARAMETER ( LRP = -.22579135264472743235D0, TWO = 2, EPS = 1D-14 )
* LRP = LOG( SQRT( 2/PI ) )
RR = R*R
IF ( N .LT. 2 ) THEN
CHI = 2*MVPHI(-R)
ELSE IF ( N .LT. 100 ) THEN
*
* Use standard Chi series
*
RN = 1
DO I = N - 2, 2, -2
RN = 1 + RR*RN/I
END DO
RR = RR/2
IF ( MOD( N, 2 ) .EQ. 0 ) THEN
CHI = EXP( LOG( RN ) - RR )
ELSE
CHI = EXP( LRP + LOG( R*RN ) - RR ) + 2*MVPHI(-R)
ENDIF
ELSE
RR = RR/2
AL = N/TWO
CHI = EXP( -RR + AL*LOG(RR) + LKN + LOG(TWO)*( N - 2 )/2 )
IF ( RR .LT. AL + 1 ) THEN
*
* Use Incomplete Gamma series
*
DL = CHI
DO I = 1, 1000
DL = DL*RR/( AL + I )
CHI = CHI + DL
IF ( ABS( DL*RR/( AL + I + 1 - RR ) ) .LT. EPS ) GO TO 10
END DO
10 CHI = 1 - CHI/AL
ELSE
*
* Use Incomplete Gamma continued fraction
*
BI = RR + 1 - AL
CI = 1/EPS
DI = BI
CHI = CHI/BI
DO I = 1, 250
AI = I*( AL - I )
BI = BI + 2
CI = BI + AI/CI
IF ( CI .EQ. 0 ) CI = EPS
DI = BI + AI/DI
IF ( DI .EQ. 0 ) DI = EPS
DL = CI/DI
CHI = CHI*DL
IF ( ABS( DL - 1 ) .LT. EPS ) GO TO 20
END DO
END IF
END IF
20 DF = ( P - CHI )/EXP( LKN + ( N - 1 )*LOG(R) - RR )
MVCHNC = R - DF*( 1 - DF*( R - ( N - 1 )/R )/2 )
END
*
SUBROUTINE MVKBRV( NDIM, MINVLS, MAXVLS, NF, FUNSUB,
& ABSEPS, RELEPS, ABSERR, FINEST, INFORM )
*
* Automatic Multidimensional Integration Subroutine
*
* AUTHOR: Alan Genz
* Department of Mathematics
* Washington State University
* Pulman, WA 99164-3113
* Email: AlanGenz@wsu.edu
*
* Last Change: 12/15/00
*
* MVKBRV computes an approximation to the integral
*
* 1 1 1
* I I ... I F(X) dx(NDIM)...dx(2)dx(1)
* 0 0 0
*
* F(X) is a real NF-vector of integrands.
*
* It uses randomized Korobov rules. The primary references are
* "Randomization of Number Theoretic Methods for Multiple Integration"
* R. Cranley and T.N.L. Patterson, SIAM J Numer Anal, 13, pp. 904-14,
* and
* "Optimal Parameters for Multidimensional Integration",
* P. Keast, SIAM J Numer Anal, 10, pp.831-838.
* If there are more than 100 variables, the remaining variables are
* integrated using the rules described in the reference
* "On a Number-Theoretical Integration Method"
* H. Niederreiter, Aequationes Mathematicae, 8(1972), pp. 304-11.
*
*************** Parameters ********************************************
****** Input parameters
* NDIM Number of variables, must exceed 1, but not exceed 100
* MINVLS Integer minimum number of function evaluations allowed.
* MINVLS must not exceed MAXVLS. If MINVLS < 0 then the
* routine assumes a previous call has been made with
* the same integrands and continues that calculation.
* MAXVLS Integer maximum number of function evaluations allowed.
* NF Number of integrands, must exceed 1, but not exceed 5000
* FUNSUB EXTERNALly declared user defined integrand subroutine.
* It must have parameters ( NDIM, Z, NF, FUNVLS ), where
* Z is a real NDIM-vector and FUNVLS is a real NF-vector.
*
* ABSEPS Required absolute accuracy.
* RELEPS Required relative accuracy.
****** Output parameters
* MINVLS Actual number of function evaluations used.
* ABSERR Maximum norm of estimated absolute accuracy of FINEST.
* FINEST Estimated NF-vector of values of the integrals.
* INFORM INFORM = 0 for normal exit, when
* ABSERR <= MAX(ABSEPS, RELEPS*||FINEST||)
* and
* INTVLS <= MAXCLS.
* INFORM = 1 If MAXVLS was too small to obtain the required
* accuracy. In this case a value FINEST is returned with
* estimated absolute accuracy ABSERR.
************************************************************************
EXTERNAL FUNSUB
DOUBLE PRECISION ABSEPS, RELEPS, FINEST(*), ABSERR, ONE
INTEGER NDIM, NF, MINVLS, MAXVLS, INFORM, NP, PLIM, KLIM,
& NLIM, FLIM, SAMPLS, I, K, INTVLS, MINSMP, KMX
PARAMETER ( PLIM = 28, NLIM = 1000, KLIM = 100, FLIM = 5000 )
PARAMETER ( MINSMP = 8 )
INTEGER P(PLIM), C(PLIM,KLIM-1), PR(NLIM)
DOUBLE PRECISION DIFINT, FINVAL(FLIM), VARSQR(FLIM), VAREST(FLIM),
& VARPRD, X(NLIM), R(NLIM), VK(NLIM), VALUES(FLIM), FS(FLIM)
PARAMETER ( ONE = 1 )
SAVE P, C, SAMPLS, NP, VAREST
INFORM = 1
INTVLS = 0
VARPRD = 0
IF ( MINVLS .GE. 0 ) THEN
DO K = 1, NF
FINEST(K) = 0
VAREST(K) = 0
END DO
SAMPLS = MINSMP
DO I = MIN( NDIM, 10 ), PLIM
NP = I
IF ( MINVLS .LT. 2*SAMPLS*P(I) ) GO TO 10
END DO
SAMPLS = MAX( MINSMP, MINVLS/( 2*P(NP) ) )
ENDIF
10 VK(1) = ONE/P(NP)
K = 1
DO I = 2, NDIM
IF ( I .LE. KLIM ) THEN
K = MOD( C(NP, MIN(NDIM-1,KLIM-1))*DBLE(K), DBLE(P(NP)) )
VK(I) = K*VK(1)
ELSE
VK(I) = INT( P(NP)*2**( DBLE(I-KLIM)/(NDIM-KLIM+1) ) )
VK(I) = MOD( VK(I)/P(NP), ONE )
END IF
END DO
DO K = 1, NF
FINVAL(K) = 0
VARSQR(K) = 0
END DO
*
DO I = 1, SAMPLS
CALL MVKRSV( NDIM,KLIM,VALUES, P(NP),VK, NF,FUNSUB, X,R,PR,FS )
DO K = 1, NF
DIFINT = ( VALUES(K) - FINVAL(K) )/I
FINVAL(K) = FINVAL(K) + DIFINT
VARSQR(K) = ( I - 2 )*VARSQR(K)/I + DIFINT**2
END DO
END DO
*
INTVLS = INTVLS + 2*SAMPLS*P(NP)
KMX = 1
DO K = 1, NF
VARPRD = VAREST(K)*VARSQR(K)
FINEST(K) = FINEST(K) + ( FINVAL(K) - FINEST(K) )/( 1+VARPRD )
IF ( VARSQR(K) .GT. 0 ) VAREST(K) = ( 1 + VARPRD )/VARSQR(K)
IF ( ABS(FINEST(K)) .GT. ABS(FINEST(KMX)) ) KMX = K
END DO
ABSERR = 7*SQRT( VARSQR(KMX)/( 1 + VARPRD ) )/2
IF ( ABSERR .GT. MAX( ABSEPS, ABS(FINEST(KMX))*RELEPS ) ) THEN
IF ( NP .LT. PLIM ) THEN
NP = NP + 1
ELSE
SAMPLS = MIN( 3*SAMPLS/2, ( MAXVLS - INTVLS )/( 2*P(NP) ) )
SAMPLS = MAX( MINSMP, SAMPLS )
ENDIF
IF ( INTVLS + 2*SAMPLS*P(NP) .LE. MAXVLS ) GO TO 10
ELSE
INFORM = 0
ENDIF
MINVLS = INTVLS
*
* Optimal Parameters for Lattice Rules
*
DATA P( 1),(C( 1,I),I = 1,99)/ 31, 12, 2*9, 13, 8*12, 3*3, 12,
& 2*7, 9*12, 3*3, 12, 2*7, 9*12, 3*3, 12, 2*7, 9*12, 3*3, 12, 2*7,
& 8*12, 7, 3*3, 3*7, 21*3/
DATA P( 2),(C( 2,I),I = 1,99)/ 47, 13, 11, 17, 10, 6*15,
& 22, 2*15, 3*6, 2*15, 9, 13, 3*2, 13, 2*11, 10, 9*15, 3*6, 2*15,
& 9, 13, 3*2, 13, 2*11, 10, 9*15, 3*6, 2*15, 9, 13, 3*2, 13, 2*11,
& 2*10, 8*15, 6, 2, 3, 2, 3, 12*2/
DATA P( 3),(C( 3,I),I = 1,99)/ 73, 27, 28, 10, 2*11, 20,
& 2*11, 28, 2*13, 28, 3*13, 16*14, 2*31, 3*5, 31, 13, 6*11, 7*13,
& 16*14, 2*31, 3*5, 11, 13, 7*11, 2*13, 11, 13, 4*5, 14, 13, 8*5/
DATA P( 4),(C( 4,I),I = 1,99)/ 113, 35, 2*27, 36, 22, 2*29,
& 20, 45, 3*5, 16*21, 29, 10*17, 12*23, 21, 27, 3*3, 24, 2*27,
& 17, 3*29, 17, 4*5, 16*21, 3*17, 6, 2*17, 6, 3, 2*6, 5*3/
DATA P( 5),(C( 5,I),I = 1,99)/ 173, 64, 66, 2*28, 2*44, 55,
& 67, 6*10, 2*38, 5*10, 12*49, 2*38, 31, 2*4, 31, 64, 3*4, 64,
& 6*45, 19*66, 11, 9*66, 45, 11, 7, 3, 3*2, 27, 5, 2*3, 2*5, 7*2/
DATA P( 6),(C( 6,I),I = 1,99)/ 263, 111, 42, 54, 118, 20,
& 2*31, 72, 17, 94, 2*14, 11, 3*14, 94, 4*10, 7*14, 3*11, 7*8,
& 5*18, 113, 2*62, 2*45, 17*113, 2*63, 53, 63, 15*67, 5*51, 12,
& 51, 12, 51, 5, 2*3, 2*2, 5/
DATA P( 7),(C( 7,I),I = 1,99)/ 397, 163, 154, 83, 43, 82,
& 92, 150, 59, 2*76, 47, 2*11, 100, 131, 6*116, 9*138, 21*101,
& 6*116, 5*100, 5*138, 19*101, 8*38, 5*3/
DATA P( 8),(C( 8,I),I = 1,99)/ 593, 246, 189, 242, 102,
& 2*250, 102, 250, 280, 118, 196, 118, 191, 215, 2*121,
& 12*49, 34*171, 8*161, 17*14, 6*10, 103, 4*10, 5/
DATA P( 9),(C( 9,I),I = 1,99)/ 907, 347, 402, 322, 418,
& 215, 220, 3*339, 337, 218, 4*315, 4*167, 361, 201, 11*124,
& 2*231, 14*90, 4*48, 23*90, 10*243, 9*283, 16, 283, 16, 2*283/
DATA P(10),(C(10,I),I = 1,99)/ 1361, 505, 220, 601, 644,
& 612, 160, 3*206, 422, 134, 518, 2*134, 518, 652, 382,
& 206, 158, 441, 179, 441, 56, 2*559, 14*56, 2*101, 56,
& 8*101, 7*193, 21*101, 17*122, 4*101/
DATA P(11),(C(11,I),I = 1,99)/ 2053, 794, 325, 960, 528,
& 2*247, 338, 366, 847, 2*753, 236, 2*334, 461, 711, 652,
& 3*381, 652, 7*381, 226, 7*326, 126, 10*326, 2*195, 19*55,
& 7*195, 11*132, 13*387/
DATA P(12),(C(12,I),I = 1,99)/ 3079, 1189, 888, 259, 1082, 725,
& 811, 636, 965, 2*497, 2*1490, 392, 1291, 2*508, 2*1291, 508,
& 1291, 2*508, 4*867, 934, 7*867, 9*1284, 4*563, 3*1010, 208,
& 838, 3*563, 2*759, 564, 2*759, 4*801, 5*759, 8*563, 22*226/
DATA P(13),(C(13,I),I = 1,99)/ 4621, 1763, 1018, 1500, 432,
& 1332, 2203, 126, 2240, 1719, 1284, 878, 1983, 4*266,
& 2*747, 2*127, 2074, 127, 2074, 1400, 10*1383, 1400, 7*1383,
& 507, 4*1073, 5*1990, 9*507, 17*1073, 6*22, 1073, 6*452, 318,
& 4*301, 2*86, 15/
DATA P(14),(C(14,I),I = 1,99)/ 6947, 2872, 3233, 1534, 2941,
& 2910, 393, 1796, 919, 446, 2*919, 1117, 7*103, 2311, 3117, 1101,
& 2*3117, 5*1101, 8*2503, 7*429, 3*1702, 5*184, 34*105, 13*784/
DATA P(15),(C(15,I),I = 1,99)/ 10427, 4309, 3758, 4034, 1963,
& 730, 642, 1502, 2246, 3834, 1511, 2*1102, 2*1522, 2*3427,
& 3928, 2*915, 4*3818, 3*4782, 3818, 4782, 2*3818, 7*1327, 9*1387,
& 13*2339, 18*3148, 3*1776, 3*3354, 925, 2*3354, 5*925, 8*2133/
DATA P(16),(C(16,I),I = 1,99)/ 15641, 6610, 6977, 1686, 3819,
& 2314, 5647, 3953, 3614, 5115, 2*423, 5408, 7426, 2*423,
& 487, 6227, 2660, 6227, 1221, 3811, 197, 4367, 351,
& 1281, 1221, 3*351, 7245, 1984, 6*2999, 3995, 4*2063, 1644,
& 2063, 2077, 3*2512, 4*2077, 19*754, 2*1097, 4*754, 248, 754,
& 4*1097, 4*222, 754,11*1982/
DATA P(17),(C(17,I),I = 1,99)/ 23473, 9861, 3647, 4073, 2535,
& 3430, 9865, 2830, 9328, 4320, 5913, 10365, 8272, 3706, 6186,
& 3*7806, 8610, 2563, 2*11558, 9421, 1181, 9421, 3*1181, 9421,
& 2*1181, 2*10574, 5*3534, 3*2898, 3450, 7*2141, 15*7055, 2831,
& 24*8204, 3*4688, 8*2831/
DATA P(18),(C(18,I),I = 1,99)/ 35221, 10327, 7582, 7124, 8214,
& 9600, 10271, 10193, 10800, 9086, 2365, 4409, 13812,
& 5661, 2*9344, 10362, 2*9344, 8585, 11114, 3*13080, 6949,
& 3*3436, 13213, 2*6130, 2*8159, 11595, 8159, 3436, 18*7096,
& 4377, 7096, 5*4377, 2*5410, 32*4377, 2*440, 3*1199/
DATA P(19),(C(19,I),I = 1,99)/ 52837, 19540, 19926, 11582,
& 11113, 24585, 8726, 17218, 419, 3*4918, 15701, 17710,
& 2*4037, 15808, 11401, 19398, 2*25950, 4454, 24987, 11719,
& 8697, 5*1452, 2*8697, 6436, 21475, 6436, 22913, 6434, 18497,
& 4*11089, 2*3036, 4*14208, 8*12906, 4*7614, 6*5021, 24*10145,
& 6*4544, 4*8394/
DATA P(20),(C(20,I),I = 1,99)/ 79259, 34566, 9579, 12654,
& 26856, 37873, 38806, 29501, 17271, 3663, 10763, 18955,
& 1298, 26560, 2*17132, 2*4753, 8713, 18624, 13082, 6791,
& 1122, 19363, 34695, 4*18770, 15628, 4*18770, 33766, 6*20837,
& 5*6545, 14*12138, 5*30483, 19*12138, 9305, 13*11107, 2*9305/
DATA P(21),(C(21,I),I = 1,99)/118891, 31929, 49367, 10982, 3527,
& 27066, 13226, 56010, 18911, 40574, 2*20767, 9686, 2*47603,
& 2*11736, 41601, 12888, 32948, 30801, 44243, 2*53351, 16016,
& 2*35086, 32581, 2*2464, 49554, 2*2464, 2*49554, 2464, 81, 27260,
& 10681, 7*2185, 5*18086, 2*17631, 3*18086, 37335, 3*37774,
& 13*26401, 12982, 6*40398, 3*3518, 9*37799, 4*4721, 4*7067/
DATA P(22),(C(22,I),I = 1,99)/178349, 40701, 69087, 77576, 64590,
& 39397, 33179, 10858, 38935, 43129, 2*35468, 5279, 2*61518, 27945,
& 2*70975, 2*86478, 2*20514, 2*73178, 2*43098, 4701,
& 2*59979, 58556, 69916, 2*15170, 2*4832, 43064, 71685, 4832,
& 3*15170, 3*27679, 2*60826, 2*6187, 5*4264, 45567, 4*32269,
& 9*62060, 13*1803, 12*51108, 2*55315, 5*54140, 13134/
DATA P(23),(C(23,I),I = 1,99)/267523, 103650, 125480, 59978,
& 46875, 77172, 83021, 126904, 14541, 56299, 43636, 11655,
& 52680, 88549, 29804, 101894, 113675, 48040, 113675,
& 34987, 48308, 97926, 5475, 49449, 6850, 2*62545, 9440,
& 33242, 9440, 33242, 9440, 33242, 9440, 62850, 3*9440,
& 3*90308, 9*47904, 7*41143, 5*36114, 24997, 14*65162, 7*47650,
& 7*40586, 4*38725, 5*88329/
DATA P(24),(C(24,I),I = 1,99)/401287, 165843, 90647, 59925,
& 189541, 67647, 74795, 68365, 167485, 143918, 74912,
& 167289, 75517, 8148, 172106, 126159,3*35867, 121694,
& 52171, 95354, 2*113969, 76304, 2*123709, 144615, 123709,
& 2*64958, 32377, 2*193002, 25023, 40017, 141605, 2*189165,
& 141605, 2*189165, 3*141605, 189165, 20*127047, 10*127785,
& 6*80822, 16*131661, 7114, 131661/
DATA P(25),(C(25,I),I = 1,99)/601943, 130365, 236711, 110235,
& 125699, 56483, 93735, 234469, 60549, 1291, 93937,
& 245291, 196061, 258647, 162489, 176631, 204895, 73353,
& 172319, 28881, 136787,2*122081, 275993, 64673, 3*211587,
& 2*282859, 211587, 242821, 3*256865, 122203, 291915, 122203,
& 2*291915, 122203, 2*25639, 291803, 245397, 284047,
& 7*245397, 94241, 2*66575, 19*217673, 10*210249, 15*94453/
DATA P(26),(C(26,I),I = 1,99)/902933, 333459, 375354, 102417,
& 383544, 292630, 41147, 374614, 48032, 435453, 281493, 358168,
& 114121, 346892, 238990, 317313, 164158, 35497, 2*70530, 434839,
& 3*24754, 393656, 2*118711, 148227, 271087, 355831, 91034,
& 2*417029, 2*91034, 417029, 91034, 2*299843, 2*413548, 308300,
& 3*413548, 3*308300, 413548, 5*308300, 4*15311, 2*176255, 6*23613,
& 172210, 4* 204328, 5*121626, 5*200187, 2*121551, 12*248492,
& 5*13942/
DATA P(27), (C(27,I), I = 1,99)/ 1354471, 500884, 566009, 399251,
& 652979, 355008, 430235, 328722, 670680, 2*405585, 424646,
& 2*670180, 641587, 215580, 59048, 633320, 81010, 20789, 2*389250,
& 2*638764, 2*389250, 398094, 80846, 2*147776, 296177, 2*398094,
& 2*147776, 396313, 3*578233, 19482, 620706, 187095, 620706,
& 187095, 126467, 12*241663, 321632, 2*23210, 3*394484, 3*78101,
& 19*542095, 3*277743, 12*457259/
DATA P(28), (C(28,I), I = 1, 99)/ 2031713, 858339, 918142, 501970,
& 234813, 460565, 31996, 753018, 256150, 199809, 993599, 245149,
& 794183, 121349, 150619, 376952, 2*809123, 804319, 67352, 969594,
& 434796, 969594, 804319, 391368, 761041, 754049, 466264, 2*754049,
& 466264, 2*754049, 282852, 429907, 390017, 276645, 994856, 250142,
& 144595, 907454, 689648, 4*687580, 978368, 687580, 552742, 105195,
& 942843, 768249, 4*307142, 7*880619, 11*117185, 11*60731,
& 4*178309, 8*74373, 3*214965/
*
END
*
SUBROUTINE MVKRSV( NDIM,KL,VALUES,PRIME,VK, NF,FUNSUB, X,R,PR,FS )
*
* For lattice rule sums
*
INTEGER NDIM, NF, PRIME, KL, K, J, JP, PR(*)
DOUBLE PRECISION VALUES(*), VK(*), FS(*), X(*), R(*), MVUNI
DO J = 1, NF
VALUES(J) = 0
END DO
*
* Determine random shifts for each variable; scramble lattice rule
*
DO J = 1, NDIM
R(J) = MVUNI()
IF ( J .LT. KL ) THEN
JP = 1 + J*R(J)
IF ( JP .LT. J ) PR(J) = PR(JP)
PR(JP) = J
ELSE
PR(J) = J
END IF
END DO
*
* Compute latice rule sums
*
DO K = 1, PRIME
DO J = 1, NDIM
R(J) = R(J) + VK(PR(J))
IF ( R(J) .GT. 1 ) R(J) = R(J) - 1
X(J) = ABS( 2*R(J) - 1 )
END DO
CALL FUNSUB( NDIM, X, NF, FS )
DO J = 1, NF
VALUES(J) = VALUES(J) + ( FS(J) - VALUES(J) )/( 2*K-1 )
END DO
DO J = 1, NDIM
X(J) = 1 - X(J)
END DO
CALL FUNSUB( NDIM, X, NF, FS )
DO J = 1, NF
VALUES(J) = VALUES(J) + ( FS(J) - VALUES(J) )/( 2*K )
END DO
END DO
*
END
*
DOUBLE PRECISION FUNCTION MVUNI()
*
* Uniform (0,1) random number generator
*
* use R's random number generator directly
* the way `Writing R extentions' advertises.
*
DOUBLE PRECISION unifrnd, x
x = unifrnd()
MVUNI = x
END