[fbf06f]: / partyMod / src / RandomForest.c

Download this file

272 lines (226 with data), 9.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
/**
Random forest with conditional inference trees
*\file RandomForest.c
*\author $Author$
*\date $Date$
*/
#include "party.h"
/**
An experimental implementation of random forest like algorithms \n
*\param learnsample an object of class `LearningSample'
*\param weights a vector of case weights
*\param bwhere integer matrix (n x ntree) for terminal node numbers
*\param bweights double matrix (n x ntree) for bootstrap case weights
*\param fitmem an object of class `TreeFitMemory'
*\param controls an object of class `TreeControl'
*/
SEXP R_Ensemble(SEXP learnsample, SEXP weights, SEXP bwhere, SEXP bweights,
SEXP fitmem, SEXP controls) {
SEXP nweights, tree, where, ans, bw, compress_exp;
double *dnweights, *dweights, sw = 0.0, *prob, tmp;
int nobs, i, b, B , nodenum = 1, *iweights, *iweightstmp,
*iwhere, replace, fraction, wgrzero = 0, realweights = 0;
int j, k, l, swi = 0;
int errorOccurred;
int *variables_to_ignore = NULL;
int ninputs;
B = get_ntree(controls);
nobs = get_nobs(learnsample);
ninputs = get_ninputs(learnsample);
PROTECT(ans = allocVector(VECSXP, B));
iweights = Calloc(nobs, int);
iweightstmp = Calloc(nobs, int);
prob = Calloc(nobs, double);
dweights = REAL(weights);
int varOnce = get_only_use_variable_once(get_tgctrl(controls));
// printf("R_Ensemble: varOnce=%d\n", varOnce);
if (varOnce) {
variables_to_ignore = Calloc(ninputs, int);
}
for (i = 0; i < nobs; i++) {
/* sum of weights */
sw += dweights[i];
/* number of weights > 0 */
if (dweights[i] > 0) wgrzero++;
/* case weights or real weights? */
if (dweights[i] - ftrunc(dweights[i]) > 0)
realweights = 1;
}
for (i = 0; i < nobs; i++)
prob[i] = dweights[i]/sw;
swi = (int) ftrunc(sw);
replace = get_replace(controls);
/* fraction of number of obs with weight > 0 */
if (realweights) {
/* fraction of number of obs with weight > 0 for real weights*/
tmp = (get_fraction(controls) * wgrzero);
} else {
/* fraction of sum of weights for case weights */
tmp = (get_fraction(controls) * sw);
}
fraction = (int) ftrunc(tmp);
if (ftrunc(tmp) < tmp) fraction++;
if (!replace) {
if (fraction < 10)
error("fraction of %f is too small", fraction);
}
/* <FIXME> can we call those guys ONCE? what about the deeper
calls??? </FIXME> */
GetRNGstate();
if (get_trace(controls))
Rprintf("\n");
for (b = 0; b < B; b++) {
SET_VECTOR_ELT(ans, b, tree = allocVector(VECSXP, NODE_LENGTH + 1));
SET_VECTOR_ELT(bwhere, b, where = allocVector(INTSXP, nobs));
SET_VECTOR_ELT(bweights, b, bw = allocVector(REALSXP, nobs));
iwhere = INTEGER(where);
for (i = 0; i < nobs; i++) iwhere[i] = 0;
C_init_node(tree, nobs, get_ninputs(learnsample),
get_maxsurrogate(get_splitctrl(controls)),
ncol(get_predict_trafo(GET_SLOT(learnsample,
PL2_responsesSym))));
/* generate altered weights for perturbation */
if (replace) {
/* weights for a bootstrap sample */
rmultinom(swi, prob, nobs, iweights);
} else {
/* weights for sample splitting */
C_SampleSplitting(nobs, prob, iweights, fraction);
}
nweights = S3get_nodeweights(tree);
dnweights = REAL(nweights);
for (i = 0; i < nobs; i++) {
REAL(bw)[i] = (double) iweights[i];
dnweights[i] = REAL(bw)[i];
}
C_TreeGrow(tree, learnsample, fitmem, controls, iwhere, &nodenum, 1, variables_to_ignore);
nodenum = 1;
int dropcriterion = get_dropcriterion(controls);
C_remove_weights(tree, dropcriterion);
PROTECT(compress_exp = lang2(get_compress(controls), tree));
SET_VECTOR_ELT(ans, b, R_tryEval(compress_exp, R_GlobalEnv, &errorOccurred) );
if(errorOccurred) {
Rprintf("error calling compress\n");
} else {
// Rprintf("no error\n");
}
UNPROTECT(1);
if (get_trace(controls)) {
/* progress bar; inspired by
http://avinashjoshi.co.in/2009/10/13/creating-a-progress-bar-in-c/ */
Rprintf("[");
/* Print the = until the current percentage */
l = (int) ceil( ((double) b * 50.0) / B);
for (j = 0; j < l; j++)
Rprintf("=");
Rprintf(">");
for (k = j; k < 50; k++)
Rprintf(" ");
Rprintf("]");
/* % completed */
Rprintf(" %3d%% completed", j * 2);
/* To delete the previous line */
Rprintf("\r");
/* Flush all char in buffer */
/* fflush(stdout); */
}
}
if (get_trace(controls))
Rprintf("\n");
PutRNGstate();
Free(prob); Free(iweights); Free(iweightstmp);
if(variables_to_ignore != NULL) {
Free(variables_to_ignore);
}
UNPROTECT(1);
return(ans);
}
/**
An experimental implementation of random forest like algorithms \n
*\param learnsample an object of class `LearningSample'
*\param weights a vector of case weights
*\param bwhere integer matrix (n x ntree) for terminal node numbers
*\param bweights double matrix (n x ntree) for bootstrap case weights
*\param fitmem an object of class `TreeFitMemory'
*\param controls an object of class `TreeControl'
*/
SEXP R_Ensemble_weights(SEXP learnsample, SEXP bwhere, SEXP bweights,
SEXP fitmem, SEXP controls) {
SEXP nweights, tree, where, ans, compress_exp;
double *dnweights, *dweights;
int nobs, i, b, B , nodenum = 1, *iwhere;
int j, k, l;
int errorOccurred;
int *variables_to_ignore = NULL;
int ninputs;
int varOnce;
B = get_ntree(controls);
nobs = get_nobs(learnsample);
ninputs = get_ninputs(learnsample);
varOnce = get_only_use_variable_once(get_tgctrl(controls));
// printf("R_Ensemble_weight: varOnce=%d\n", varOnce);
if (varOnce) {
variables_to_ignore = Calloc(ninputs, int);
}
PROTECT(ans = allocVector(VECSXP, B));
/* <FIXME> can we call those guys ONCE? what about the deeper
calls??? </FIXME> */
GetRNGstate();
if (get_trace(controls))
Rprintf("\n");
for (b = 0; b < B; b++) {
SET_VECTOR_ELT(ans, b, tree = allocVector(VECSXP, NODE_LENGTH + 1));
SET_VECTOR_ELT(bwhere, b, where = allocVector(INTSXP, nobs));
iwhere = INTEGER(where);
for (i = 0; i < nobs; i++) iwhere[i] = 0;
C_init_node(tree, nobs, get_ninputs(learnsample),
get_maxsurrogate(get_splitctrl(controls)),
ncol(get_predict_trafo(GET_SLOT(learnsample,
PL2_responsesSym))));
nweights = S3get_nodeweights(tree);
dnweights = REAL(nweights);
dweights = REAL(VECTOR_ELT(bweights, b));
for (i = 0; i < nobs; i++) {
dnweights[i] = dweights[i];
}
C_TreeGrow(tree, learnsample, fitmem, controls, iwhere, &nodenum, 1, variables_to_ignore);
nodenum = 1;
int dropcriterion = get_dropcriterion(controls);
C_remove_weights(tree, dropcriterion);
PROTECT(compress_exp = lang2(get_compress(controls), tree));
SET_VECTOR_ELT(ans, b, R_tryEval(compress_exp, R_GlobalEnv, &errorOccurred) );
if(errorOccurred) {
Rprintf("error calling compress\n");
} else {
// Rprintf("no error\n");
}
UNPROTECT(1);
if (get_trace(controls)) {
/* progress bar; inspired by
http://avinashjoshi.co.in/2009/10/13/creating-a-progress-bar-in-c/ */
Rprintf("[");
/* Print the = until the current percentage */
l = (int) ceil( ((double) b * 50.0) / B);
for (j = 0; j < l; j++)
Rprintf("=");
Rprintf(">");
for (k = j; k < 50; k++)
Rprintf(" ");
Rprintf("]");
/* % completed */
Rprintf(" %3d%% completed", j * 2);
/* To delete the previous line */
Rprintf("\r");
/* Flush all char in buffer */
/* fflush(stdout); */
}
}
if (get_trace(controls))
Rprintf("\n");
PutRNGstate();
UNPROTECT(1);
if(variables_to_ignore != NULL) {
Free(variables_to_ignore);
}
return(ans);
}