\name{RandomForest-class}
\docType{class}
\alias{RandomForest-class}
\alias{treeresponse,RandomForest-method}
\alias{weights,RandomForest-method}
\alias{where,RandomForest-method}
\alias{show,RandomForest-method}
\title{Class "RandomForest"}
\description{A class for representing random forest ensembles. }
\section{Objects from the Class}{
Objects can be created by calls of the form \code{new("RandomForest", ...)}.
}
\section{Slots}{
\describe{
\item{\code{ensemble}:}{Object of class \code{"list"}, each element
being an object of class \code{"\linkS4class{BinaryTree}"}.}
\item{\code{data}:}{ an object of class \code{"\linkS4class{ModelEnv}"}.}
\item{\code{initweights}:}{ a vector of initial weights.}
\item{\code{weights}:}{ a list of weights defining the sub-samples.}
\item{\code{where}:}{ a matrix of integers vectors of length n (number of
observations in the learning sample) giving the
number of the terminal node the corresponding
observations is element of (in each tree).}
\item{\code{data}:}{ an object of class \code{"\linkS4class{ModelEnv}"}.}
\item{\code{responses}:}{ an object of class \code{"VariableFrame"}
storing the values of the response variable(s). }
\item{\code{cond_distr_response}:}{ a function computing the conditional
distribution of the response. }
\item{\code{predict_response}:}{ a function for computing predictions. }
\item{\code{prediction_weights}:}{ a function for extracting weights from
terminal nodes. }
\item{\code{get_where}:}{ a function for determining the number
of terminal nodes observations fall into. }
\item{\code{update}:}{ a function for updating weights.}
}
}
\section{Methods}{
\describe{
\item{treeresponse}{\code{signature(object = "RandomForest")}: ... }
\item{weights}{\code{signature(object = "RandomForest")}: ... }
\item{where}{\code{signature(object = "RandomForest")}: ... }
}
}
\examples{
set.seed(290875)
### honest (i.e., out-of-bag) cross-classification of
### true vs. predicted classes
data("mammoexp", package = "TH.data")
table(mammoexp$ME, predict(cforest(ME ~ ., data = mammoexp,
control = cforest_unbiased(ntree = 50)),
OOB = TRUE))
}
\keyword{classes}