[fbf06f]: / partyMod / R / ConditionalTree.R

Download this file

258 lines (210 with data), 9.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# $Id$
### the fitting procedure
ctreefit <- function(object, controls, weights = NULL, fitmem = NULL, ...) {
if (!extends(class(object), "LearningSample"))
stop(sQuote("object"), " is not of class ", sQuote("LearningSample"))
if (!extends(class(controls), "TreeControl"))
stop(sQuote("controls"), " is not of class ", sQuote("TreeControl"))
if (is.null(fitmem))
fitmem <- ctree_memory(object, TRUE)
if (!extends(class(fitmem), "TreeFitMemory"))
stop(sQuote("fitmem"), " is not of class ", sQuote("TreeFitMemory"))
if (is.null(weights))
weights <- object@weights
storage.mode(weights) <- "double"
if (length(weights) != object@nobs || storage.mode(weights) != "double")
stop(sQuote("weights"), " are not a double vector of ",
object@nobs, " elements")
if (max(abs(floor(weights) - weights)) > sqrt(.Machine$double.eps))
stop(sQuote("weights"), " contains real valued elements; currently
only integer values are allowed")
where <- rep(0, object@nobs)
storage.mode(where) <- "integer"
### grow the tree
tree <- .Call("R_TreeGrow", object, weights, fitmem, controls, where,
PACKAGE = "atlantisPartyMod")
### create S3 classes and put names on lists
tree <- prettytree(tree, names(object@inputs@variables),
object@inputs@levels)
### prepare the returned object
RET <- new("BinaryTree")
RET@tree <- tree
RET@where <- where
RET@weights <- weights
RET@responses <- object@responses
if (inherits(object, "LearningSampleFormula"))
RET@data <- object@menv
RET@update <- function(weights = NULL) {
ctreefit(object = object, controls = controls,
weights = weights, fitmem = fitmem, ...)
}
### get terminal node numbers
RET@get_where <- function(newdata = NULL, mincriterion = 0, ...) {
if (is.null(newdata) && mincriterion == 0) {
if (all(where > 0)) return(where)
}
newinp <- newinputs(object, newdata)
R_get_nodeID(tree, newinp, mincriterion)
}
### (estimated) conditional distribution of the response given the
### covariates
RET@cond_distr_response <- function(newdata = NULL, mincriterion = 0, ...) {
wh <- RET@get_where(newdata = newdata, mincriterion = mincriterion)
response <- object@responses
### survival: estimated Kaplan-Meier
if (any(response@is_censored)) {
swh <- sort(unique(wh))
# w <- .Call("R_getweights", tree, swh,
# PACKAGE = "atlantisPartyMod")
RET <- vector(mode = "list", length = length(wh))
resp <- response@variables[[1]]
for (i in 1:length(swh)) {
w <- weights * (where == swh[i])
RET[wh == swh[i]] <- list(mysurvfit(resp, weights = w))
}
return(RET)
}
### classification: estimated class probabilities
### regression: the means, not really a distribution
RET <- .Call("R_getpredictions", tree, wh, PACKAGE = "atlantisPartyMod")
return(RET)
}
### predict in the response space, always!
RET@predict_response <- function(newdata = NULL, mincriterion = 0,
type = c("response", "node", "prob"), ...) {
type <- match.arg(type)
if (type == "node")
return(RET@get_where(newdata = newdata,
mincriterion = mincriterion, ...))
cdresp <- RET@cond_distr_response(newdata = newdata,
mincriterion = mincriterion, ...)
if (type == "prob")
return(cdresp)
### <FIXME> multivariate responses, we might want to return
### a data.frame
### </FIXME>
if (object@responses@ninputs > 1)
return(cdresp)
response <- object@responses
### classification: classes
if (all(response@is_nominal || response@is_ordinal)) {
lev <- levels(response@variables[[1]])
RET <- factor(lev[unlist(lapply(cdresp, which.max))],
levels = levels(response@variables[[1]]))
return(RET)
}
### survival: median survival time
if (any(response@is_censored)) {
RET <- sapply(cdresp, mst)
return(RET)
}
### regression: mean (median would be possible)
RET <- unlist(cdresp)
RET <- matrix(unlist(RET),
nrow = length(RET), byrow = TRUE)
### <FIXME> what about multivariate responses?
if (response@ninputs == 1)
colnames(RET) <- names(response@variables)
### </FIXME>
return(RET)
}
RET@prediction_weights <- function(newdata = NULL,
mincriterion = 0, ...) {
wh <- RET@get_where(newdata = newdata, mincriterion = mincriterion)
swh <- sort(unique(wh))
# w <- .Call("R_getweights", tree, swh,
# PACKAGE = "atlantisPartyMod")
RET <- vector(mode = "list", length = length(wh))
for (i in 1:length(swh))
RET[wh == swh[i]] <- list(weights * (where == swh[i]))
return(RET)
}
return(RET)
}
### data pre-processing (ordering, computing transformations etc)
ctreedpp <- function(formula, data = list(), subset = NULL,
na.action = NULL, xtrafo = ptrafo, ytrafo = ptrafo,
scores = NULL, ...) {
dat <- ModelEnvFormula(formula = formula, data = data,
subset = subset, designMatrix = FALSE,
responseMatrix = FALSE, ...)
inp <- initVariableFrame(dat@get("input"), trafo = xtrafo,
scores = scores)
response <- dat@get("response")
if (any(is.na(response)))
stop("missing values in response variable not allowed")
resp <- initVariableFrame(response, trafo = ytrafo, response = TRUE,
scores = scores)
RET <- new("LearningSampleFormula", inputs = inp, responses = resp,
weights = rep(1, inp@nobs), nobs = inp@nobs,
ninputs = inp@ninputs, menv = dat)
RET
}
### the unfitted conditional tree, an object of class `StatModel'
### see package `modeltools'
conditionalTree <- new("StatModel",
capabilities = new("StatModelCapabilities"),
name = "unbiased conditional recursive partitioning",
dpp = ctreedpp,
fit = ctreefit,
predict = function(object, ...)
object@predict_response(...) )
### we need a `fit' method for data = LearningSample
setMethod("fit", signature = signature(model = "StatModel",
data = "LearningSample"),
definition = function(model, data, ...)
model@fit(data, ...)
)
### control the hyper parameters
ctree_control <- function(teststat = c("quad", "max"),
testtype = c("Bonferroni", "MonteCarlo", "Univariate", "Teststatistic"),
mincriterion = 0.95, minsplit = 20, minbucket = 7, stump = FALSE,
nresample = 9999, maxsurrogate = 0, mtry = 0,
savesplitstats = TRUE, maxdepth = 0, varOnce=FALSE) {
teststat <- match.arg(teststat)
testtype <- match.arg(testtype)
RET <- new("TreeControl")
if (teststat %in% levels(RET@varctrl@teststat)) {
RET@varctrl@teststat <- factor(teststat,
levels = levels(RET@varctrl@teststat))
} else {
stop(sQuote("teststat"), teststat, " not defined")
}
if (testtype %in% levels(RET@gtctrl@testtype))
RET@gtctrl@testtype <- factor(testtype,
levels = levels(RET@gtctrl@testtype))
else
stop(testtype, " not defined")
if (RET@gtctrl@testtype == "Teststatistic")
RET@varctrl@pvalue <- as.logical(FALSE)
RET@gtctrl@nresample <- as.integer(nresample)
RET@gtctrl@mincriterion <- as.double(mincriterion)
if (all(mtry > 0)) {
RET@gtctrl@randomsplits <- as.logical(TRUE)
RET@gtctrl@mtry <- as.integer(mtry)
}
RET@tgctrl@savesplitstats <- as.logical(savesplitstats)
RET@splitctrl@minsplit <- as.double(minsplit)
RET@splitctrl@maxsurrogate <- as.integer(maxsurrogate)
RET@splitctrl@minbucket <- as.double(minbucket)
RET@tgctrl@stump <- as.logical(stump)
RET@tgctrl@varOnce <- as.logical(varOnce)
RET@tgctrl@maxdepth <- as.integer(maxdepth)
RET@tgctrl@savesplitstats <- as.logical(savesplitstats)
if (!validObject(RET))
stop("RET is not a valid object of class", class(RET))
RET
}
### the top-level convenience function
ctree <- function(formula, data = list(), subset = NULL, weights = NULL,
controls = ctree_control(), xtrafo = ptrafo,
ytrafo = ptrafo, scores = NULL) {
### setup learning sample
ls <- dpp(conditionalTree, formula, data, subset, xtrafo = xtrafo,
ytrafo = ytrafo, scores = scores)
### setup memory
fitmem <- ctree_memory(ls, TRUE)
### fit and return a conditional tree
fit(conditionalTree, ls, controls = controls, weights = weights,
fitmem = fitmem)
}