|
a |
|
b/partyMod/vignettes/party.Rout.save |
|
|
1 |
|
|
|
2 |
> options(width = 70, SweaveHooks = list(leftpar = function() par(mai = par("mai") * |
|
|
3 |
+ c(1, 1.1, 1, 1)))) |
|
|
4 |
|
|
|
5 |
> require("party") |
|
|
6 |
Loading required package: party |
|
|
7 |
Loading required package: grid |
|
|
8 |
Loading required package: zoo |
|
|
9 |
|
|
|
10 |
Attaching package: ‘zoo’ |
|
|
11 |
|
|
|
12 |
The following objects are masked from ‘package:base’: |
|
|
13 |
|
|
|
14 |
as.Date, as.Date.numeric |
|
|
15 |
|
|
|
16 |
Loading required package: sandwich |
|
|
17 |
Loading required package: strucchange |
|
|
18 |
Loading required package: modeltools |
|
|
19 |
Loading required package: stats4 |
|
|
20 |
|
|
|
21 |
> require("coin") |
|
|
22 |
Loading required package: coin |
|
|
23 |
Loading required package: survival |
|
|
24 |
Loading required package: splines |
|
|
25 |
|
|
|
26 |
> set.seed(290875) |
|
|
27 |
|
|
|
28 |
> ls <- data.frame(y = gl(3, 50, labels = c("A", "B", |
|
|
29 |
+ "C")), x1 = rnorm(150) + rep(c(1, 0, 0), c(50, 50, 50)), |
|
|
30 |
+ x2 = runif(150)) |
|
|
31 |
|
|
|
32 |
> library("party") |
|
|
33 |
|
|
|
34 |
> ctree(y ~ x1 + x2, data = ls) |
|
|
35 |
|
|
|
36 |
Conditional inference tree with 2 terminal nodes |
|
|
37 |
|
|
|
38 |
Response: y |
|
|
39 |
Inputs: x1, x2 |
|
|
40 |
Number of observations: 150 |
|
|
41 |
|
|
|
42 |
1) x1 <= 0.8255248; criterion = 1, statistic = 22.991 |
|
|
43 |
2)* weights = 96 |
|
|
44 |
1) x1 > 0.8255248 |
|
|
45 |
3)* weights = 54 |
|
|
46 |
|
|
|
47 |
> ctree(y ~ x1 + x2, data = ls, xtrafo = function(data) trafo(data, |
|
|
48 |
+ numeric_trafo = rank)) |
|
|
49 |
|
|
|
50 |
Conditional inference tree with 2 terminal nodes |
|
|
51 |
|
|
|
52 |
Response: y |
|
|
53 |
Inputs: x1, x2 |
|
|
54 |
Number of observations: 150 |
|
|
55 |
|
|
|
56 |
1) x1 <= 0.8255248; criterion = 1, statistic = 22.186 |
|
|
57 |
2)* weights = 96 |
|
|
58 |
1) x1 > 0.8255248 |
|
|
59 |
3)* weights = 54 |
|
|
60 |
|
|
|
61 |
> ctree_control(testtype = "Bonferroni") |
|
|
62 |
An object of class "TreeControl" |
|
|
63 |
Slot "varctrl": |
|
|
64 |
An object of class "VariableControl" |
|
|
65 |
Slot "teststat": |
|
|
66 |
[1] quad |
|
|
67 |
Levels: max quad |
|
|
68 |
|
|
|
69 |
Slot "pvalue": |
|
|
70 |
[1] TRUE |
|
|
71 |
|
|
|
72 |
Slot "tol": |
|
|
73 |
[1] 1e-10 |
|
|
74 |
|
|
|
75 |
Slot "maxpts": |
|
|
76 |
[1] 25000 |
|
|
77 |
|
|
|
78 |
Slot "abseps": |
|
|
79 |
[1] 1e-04 |
|
|
80 |
|
|
|
81 |
Slot "releps": |
|
|
82 |
[1] 0 |
|
|
83 |
|
|
|
84 |
|
|
|
85 |
Slot "splitctrl": |
|
|
86 |
An object of class "SplitControl" |
|
|
87 |
Slot "minprob": |
|
|
88 |
[1] 0.01 |
|
|
89 |
|
|
|
90 |
Slot "minsplit": |
|
|
91 |
[1] 20 |
|
|
92 |
|
|
|
93 |
Slot "minbucket": |
|
|
94 |
[1] 7 |
|
|
95 |
|
|
|
96 |
Slot "tol": |
|
|
97 |
[1] 1e-10 |
|
|
98 |
|
|
|
99 |
Slot "maxsurrogate": |
|
|
100 |
[1] 0 |
|
|
101 |
|
|
|
102 |
|
|
|
103 |
Slot "gtctrl": |
|
|
104 |
An object of class "GlobalTestControl" |
|
|
105 |
Slot "testtype": |
|
|
106 |
[1] Bonferroni |
|
|
107 |
5 Levels: Bonferroni MonteCarlo Aggregated ... Teststatistic |
|
|
108 |
|
|
|
109 |
Slot "nresample": |
|
|
110 |
[1] 9999 |
|
|
111 |
|
|
|
112 |
Slot "randomsplits": |
|
|
113 |
[1] FALSE |
|
|
114 |
|
|
|
115 |
Slot "mtry": |
|
|
116 |
[1] 0 |
|
|
117 |
|
|
|
118 |
Slot "mincriterion": |
|
|
119 |
[1] 0.95 |
|
|
120 |
|
|
|
121 |
|
|
|
122 |
Slot "tgctrl": |
|
|
123 |
An object of class "TreeGrowControl" |
|
|
124 |
Slot "stump": |
|
|
125 |
[1] FALSE |
|
|
126 |
|
|
|
127 |
Slot "maxdepth": |
|
|
128 |
[1] 0 |
|
|
129 |
|
|
|
130 |
Slot "savesplitstats": |
|
|
131 |
[1] TRUE |
|
|
132 |
|
|
|
133 |
|
|
|
134 |
|
|
|
135 |
> ctree_control(testtype = "MonteCarlo") |
|
|
136 |
An object of class "TreeControl" |
|
|
137 |
Slot "varctrl": |
|
|
138 |
An object of class "VariableControl" |
|
|
139 |
Slot "teststat": |
|
|
140 |
[1] quad |
|
|
141 |
Levels: max quad |
|
|
142 |
|
|
|
143 |
Slot "pvalue": |
|
|
144 |
[1] TRUE |
|
|
145 |
|
|
|
146 |
Slot "tol": |
|
|
147 |
[1] 1e-10 |
|
|
148 |
|
|
|
149 |
Slot "maxpts": |
|
|
150 |
[1] 25000 |
|
|
151 |
|
|
|
152 |
Slot "abseps": |
|
|
153 |
[1] 1e-04 |
|
|
154 |
|
|
|
155 |
Slot "releps": |
|
|
156 |
[1] 0 |
|
|
157 |
|
|
|
158 |
|
|
|
159 |
Slot "splitctrl": |
|
|
160 |
An object of class "SplitControl" |
|
|
161 |
Slot "minprob": |
|
|
162 |
[1] 0.01 |
|
|
163 |
|
|
|
164 |
Slot "minsplit": |
|
|
165 |
[1] 20 |
|
|
166 |
|
|
|
167 |
Slot "minbucket": |
|
|
168 |
[1] 7 |
|
|
169 |
|
|
|
170 |
Slot "tol": |
|
|
171 |
[1] 1e-10 |
|
|
172 |
|
|
|
173 |
Slot "maxsurrogate": |
|
|
174 |
[1] 0 |
|
|
175 |
|
|
|
176 |
|
|
|
177 |
Slot "gtctrl": |
|
|
178 |
An object of class "GlobalTestControl" |
|
|
179 |
Slot "testtype": |
|
|
180 |
[1] MonteCarlo |
|
|
181 |
5 Levels: Bonferroni MonteCarlo Aggregated ... Teststatistic |
|
|
182 |
|
|
|
183 |
Slot "nresample": |
|
|
184 |
[1] 9999 |
|
|
185 |
|
|
|
186 |
Slot "randomsplits": |
|
|
187 |
[1] FALSE |
|
|
188 |
|
|
|
189 |
Slot "mtry": |
|
|
190 |
[1] 0 |
|
|
191 |
|
|
|
192 |
Slot "mincriterion": |
|
|
193 |
[1] 0.95 |
|
|
194 |
|
|
|
195 |
|
|
|
196 |
Slot "tgctrl": |
|
|
197 |
An object of class "TreeGrowControl" |
|
|
198 |
Slot "stump": |
|
|
199 |
[1] FALSE |
|
|
200 |
|
|
|
201 |
Slot "maxdepth": |
|
|
202 |
[1] 0 |
|
|
203 |
|
|
|
204 |
Slot "savesplitstats": |
|
|
205 |
[1] TRUE |
|
|
206 |
|
|
|
207 |
|
|
|
208 |
|
|
|
209 |
> ctree_control(savesplitstats = TRUE) |
|
|
210 |
An object of class "TreeControl" |
|
|
211 |
Slot "varctrl": |
|
|
212 |
An object of class "VariableControl" |
|
|
213 |
Slot "teststat": |
|
|
214 |
[1] quad |
|
|
215 |
Levels: max quad |
|
|
216 |
|
|
|
217 |
Slot "pvalue": |
|
|
218 |
[1] TRUE |
|
|
219 |
|
|
|
220 |
Slot "tol": |
|
|
221 |
[1] 1e-10 |
|
|
222 |
|
|
|
223 |
Slot "maxpts": |
|
|
224 |
[1] 25000 |
|
|
225 |
|
|
|
226 |
Slot "abseps": |
|
|
227 |
[1] 1e-04 |
|
|
228 |
|
|
|
229 |
Slot "releps": |
|
|
230 |
[1] 0 |
|
|
231 |
|
|
|
232 |
|
|
|
233 |
Slot "splitctrl": |
|
|
234 |
An object of class "SplitControl" |
|
|
235 |
Slot "minprob": |
|
|
236 |
[1] 0.01 |
|
|
237 |
|
|
|
238 |
Slot "minsplit": |
|
|
239 |
[1] 20 |
|
|
240 |
|
|
|
241 |
Slot "minbucket": |
|
|
242 |
[1] 7 |
|
|
243 |
|
|
|
244 |
Slot "tol": |
|
|
245 |
[1] 1e-10 |
|
|
246 |
|
|
|
247 |
Slot "maxsurrogate": |
|
|
248 |
[1] 0 |
|
|
249 |
|
|
|
250 |
|
|
|
251 |
Slot "gtctrl": |
|
|
252 |
An object of class "GlobalTestControl" |
|
|
253 |
Slot "testtype": |
|
|
254 |
[1] Bonferroni |
|
|
255 |
5 Levels: Bonferroni MonteCarlo Aggregated ... Teststatistic |
|
|
256 |
|
|
|
257 |
Slot "nresample": |
|
|
258 |
[1] 9999 |
|
|
259 |
|
|
|
260 |
Slot "randomsplits": |
|
|
261 |
[1] FALSE |
|
|
262 |
|
|
|
263 |
Slot "mtry": |
|
|
264 |
[1] 0 |
|
|
265 |
|
|
|
266 |
Slot "mincriterion": |
|
|
267 |
[1] 0.95 |
|
|
268 |
|
|
|
269 |
|
|
|
270 |
Slot "tgctrl": |
|
|
271 |
An object of class "TreeGrowControl" |
|
|
272 |
Slot "stump": |
|
|
273 |
[1] FALSE |
|
|
274 |
|
|
|
275 |
Slot "maxdepth": |
|
|
276 |
[1] 0 |
|
|
277 |
|
|
|
278 |
Slot "savesplitstats": |
|
|
279 |
[1] TRUE |
|
|
280 |
|
|
|
281 |
|
|
|
282 |
|
|
|
283 |
> ctree_control(minsplit = 20) |
|
|
284 |
An object of class "TreeControl" |
|
|
285 |
Slot "varctrl": |
|
|
286 |
An object of class "VariableControl" |
|
|
287 |
Slot "teststat": |
|
|
288 |
[1] quad |
|
|
289 |
Levels: max quad |
|
|
290 |
|
|
|
291 |
Slot "pvalue": |
|
|
292 |
[1] TRUE |
|
|
293 |
|
|
|
294 |
Slot "tol": |
|
|
295 |
[1] 1e-10 |
|
|
296 |
|
|
|
297 |
Slot "maxpts": |
|
|
298 |
[1] 25000 |
|
|
299 |
|
|
|
300 |
Slot "abseps": |
|
|
301 |
[1] 1e-04 |
|
|
302 |
|
|
|
303 |
Slot "releps": |
|
|
304 |
[1] 0 |
|
|
305 |
|
|
|
306 |
|
|
|
307 |
Slot "splitctrl": |
|
|
308 |
An object of class "SplitControl" |
|
|
309 |
Slot "minprob": |
|
|
310 |
[1] 0.01 |
|
|
311 |
|
|
|
312 |
Slot "minsplit": |
|
|
313 |
[1] 20 |
|
|
314 |
|
|
|
315 |
Slot "minbucket": |
|
|
316 |
[1] 7 |
|
|
317 |
|
|
|
318 |
Slot "tol": |
|
|
319 |
[1] 1e-10 |
|
|
320 |
|
|
|
321 |
Slot "maxsurrogate": |
|
|
322 |
[1] 0 |
|
|
323 |
|
|
|
324 |
|
|
|
325 |
Slot "gtctrl": |
|
|
326 |
An object of class "GlobalTestControl" |
|
|
327 |
Slot "testtype": |
|
|
328 |
[1] Bonferroni |
|
|
329 |
5 Levels: Bonferroni MonteCarlo Aggregated ... Teststatistic |
|
|
330 |
|
|
|
331 |
Slot "nresample": |
|
|
332 |
[1] 9999 |
|
|
333 |
|
|
|
334 |
Slot "randomsplits": |
|
|
335 |
[1] FALSE |
|
|
336 |
|
|
|
337 |
Slot "mtry": |
|
|
338 |
[1] 0 |
|
|
339 |
|
|
|
340 |
Slot "mincriterion": |
|
|
341 |
[1] 0.95 |
|
|
342 |
|
|
|
343 |
|
|
|
344 |
Slot "tgctrl": |
|
|
345 |
An object of class "TreeGrowControl" |
|
|
346 |
Slot "stump": |
|
|
347 |
[1] FALSE |
|
|
348 |
|
|
|
349 |
Slot "maxdepth": |
|
|
350 |
[1] 0 |
|
|
351 |
|
|
|
352 |
Slot "savesplitstats": |
|
|
353 |
[1] TRUE |
|
|
354 |
|
|
|
355 |
|
|
|
356 |
|
|
|
357 |
> ctree_control(maxsurrogate = 3) |
|
|
358 |
An object of class "TreeControl" |
|
|
359 |
Slot "varctrl": |
|
|
360 |
An object of class "VariableControl" |
|
|
361 |
Slot "teststat": |
|
|
362 |
[1] quad |
|
|
363 |
Levels: max quad |
|
|
364 |
|
|
|
365 |
Slot "pvalue": |
|
|
366 |
[1] TRUE |
|
|
367 |
|
|
|
368 |
Slot "tol": |
|
|
369 |
[1] 1e-10 |
|
|
370 |
|
|
|
371 |
Slot "maxpts": |
|
|
372 |
[1] 25000 |
|
|
373 |
|
|
|
374 |
Slot "abseps": |
|
|
375 |
[1] 1e-04 |
|
|
376 |
|
|
|
377 |
Slot "releps": |
|
|
378 |
[1] 0 |
|
|
379 |
|
|
|
380 |
|
|
|
381 |
Slot "splitctrl": |
|
|
382 |
An object of class "SplitControl" |
|
|
383 |
Slot "minprob": |
|
|
384 |
[1] 0.01 |
|
|
385 |
|
|
|
386 |
Slot "minsplit": |
|
|
387 |
[1] 20 |
|
|
388 |
|
|
|
389 |
Slot "minbucket": |
|
|
390 |
[1] 7 |
|
|
391 |
|
|
|
392 |
Slot "tol": |
|
|
393 |
[1] 1e-10 |
|
|
394 |
|
|
|
395 |
Slot "maxsurrogate": |
|
|
396 |
[1] 3 |
|
|
397 |
|
|
|
398 |
|
|
|
399 |
Slot "gtctrl": |
|
|
400 |
An object of class "GlobalTestControl" |
|
|
401 |
Slot "testtype": |
|
|
402 |
[1] Bonferroni |
|
|
403 |
5 Levels: Bonferroni MonteCarlo Aggregated ... Teststatistic |
|
|
404 |
|
|
|
405 |
Slot "nresample": |
|
|
406 |
[1] 9999 |
|
|
407 |
|
|
|
408 |
Slot "randomsplits": |
|
|
409 |
[1] FALSE |
|
|
410 |
|
|
|
411 |
Slot "mtry": |
|
|
412 |
[1] 0 |
|
|
413 |
|
|
|
414 |
Slot "mincriterion": |
|
|
415 |
[1] 0.95 |
|
|
416 |
|
|
|
417 |
|
|
|
418 |
Slot "tgctrl": |
|
|
419 |
An object of class "TreeGrowControl" |
|
|
420 |
Slot "stump": |
|
|
421 |
[1] FALSE |
|
|
422 |
|
|
|
423 |
Slot "maxdepth": |
|
|
424 |
[1] 0 |
|
|
425 |
|
|
|
426 |
Slot "savesplitstats": |
|
|
427 |
[1] TRUE |
|
|
428 |
|
|
|
429 |
|
|
|
430 |
|
|
|
431 |
> ct <- ctree(y ~ x1 + x2, data = ls) |
|
|
432 |
|
|
|
433 |
> ct |
|
|
434 |
|
|
|
435 |
Conditional inference tree with 2 terminal nodes |
|
|
436 |
|
|
|
437 |
Response: y |
|
|
438 |
Inputs: x1, x2 |
|
|
439 |
Number of observations: 150 |
|
|
440 |
|
|
|
441 |
1) x1 <= 0.8255248; criterion = 1, statistic = 22.991 |
|
|
442 |
2)* weights = 96 |
|
|
443 |
1) x1 > 0.8255248 |
|
|
444 |
3)* weights = 54 |
|
|
445 |
|
|
|
446 |
> plot(ct) |
|
|
447 |
|
|
|
448 |
> nodes(ct, 1) |
|
|
449 |
[[1]] |
|
|
450 |
1) x1 <= 0.8255248; criterion = 1, statistic = 22.991 |
|
|
451 |
2)* weights = 96 |
|
|
452 |
1) x1 > 0.8255248 |
|
|
453 |
3)* weights = 54 |
|
|
454 |
|
|
|
455 |
|
|
|
456 |
> names(nodes(ct, 1)[[1]]) |
|
|
457 |
[1] "nodeID" "weights" "criterion" "terminal" "psplit" |
|
|
458 |
[6] "ssplits" "prediction" "left" "right" NA |
|
|
459 |
|
|
|
460 |
> Predict(ct, newdata = ls) |
|
|
461 |
[1] A A A A C A C A C C A A C A A A A C A C A A A C A A A C C A A C |
|
|
462 |
[33] A A C A A C C C A A C C C C A A A A A A C C C C A C C A C C C C |
|
|
463 |
[65] C C A A A A A C C A C A C C C C C C C C C C C C A C A C A C C C |
|
|
464 |
[97] C C C C C A C C C A C C A C C C C C C C A C C C C C C C C C C C |
|
|
465 |
[129] C C C C C C C C C A C C C C A C C A C A C A |
|
|
466 |
Levels: A B C |
|
|
467 |
|
|
|
468 |
> treeresponse(ct, newdata = ls[c(1, 51, 101), ]) |
|
|
469 |
[[1]] |
|
|
470 |
[1] 0.5740741 0.2592593 0.1666667 |
|
|
471 |
|
|
|
472 |
[[2]] |
|
|
473 |
[1] 0.5740741 0.2592593 0.1666667 |
|
|
474 |
|
|
|
475 |
[[3]] |
|
|
476 |
[1] 0.1979167 0.3750000 0.4270833 |
|
|
477 |
|
|
|
478 |
|
|
|
479 |
> where(ct, newdata = ls[c(1, 51, 101), ]) |
|
|
480 |
[1] 3 3 2 |
|
|
481 |
|
|
|
482 |
> data("treepipit", package = "coin") |
|
|
483 |
|
|
|
484 |
> tptree <- ctree(counts ~ ., data = treepipit) |
|
|
485 |
|
|
|
486 |
> plot(tptree, terminal_panel = node_hist(tptree, breaks = 0:6 - |
|
|
487 |
+ 0.5, ymax = 65, horizontal = FALSE, freq = TRUE)) |
|
|
488 |
|
|
|
489 |
> x <- tptree@tree |
|
|
490 |
|
|
|
491 |
> data("GlaucomaM", package = "TH.data") |
|
|
492 |
|
|
|
493 |
> gtree <- ctree(Class ~ ., data = GlaucomaM) |
|
|
494 |
|
|
|
495 |
> x <- gtree@tree |
|
|
496 |
|
|
|
497 |
> plot(gtree) |
|
|
498 |
|
|
|
499 |
> plot(gtree, inner_panel = node_barplot, edge_panel = function(...) invisible(), |
|
|
500 |
+ tnex = 1) |
|
|
501 |
|
|
|
502 |
> cex <- 1.6 |
|
|
503 |
|
|
|
504 |
> inner <- nodes(gtree, c(1, 2, 5)) |
|
|
505 |
|
|
|
506 |
> layout(matrix(1:length(inner), ncol = length(inner))) |
|
|
507 |
|
|
|
508 |
> out <- sapply(inner, function(i) { |
|
|
509 |
+ splitstat <- i$psplit$splitstatistic |
|
|
510 |
+ x <- GlaucomaM[[i$psplit$variableName]][splitstat > 0] |
|
|
511 |
+ plo .... [TRUNCATED] |
|
|
512 |
|
|
|
513 |
> table(Predict(gtree), GlaucomaM$Class) |
|
|
514 |
|
|
|
515 |
glaucoma normal |
|
|
516 |
glaucoma 74 5 |
|
|
517 |
normal 24 93 |
|
|
518 |
|
|
|
519 |
> prob <- sapply(treeresponse(gtree), function(x) x[1]) + |
|
|
520 |
+ runif(nrow(GlaucomaM), min = -0.01, max = 0.01) |
|
|
521 |
|
|
|
522 |
> splitvar <- nodes(gtree, 1)[[1]]$psplit$variableName |
|
|
523 |
|
|
|
524 |
> plot(GlaucomaM[[splitvar]], prob, pch = as.numeric(GlaucomaM$Class), |
|
|
525 |
+ ylab = "Conditional Class Prob.", xlab = splitvar) |
|
|
526 |
|
|
|
527 |
> abline(v = nodes(gtree, 1)[[1]]$psplit$splitpoint, |
|
|
528 |
+ lty = 2) |
|
|
529 |
|
|
|
530 |
> legend(0.15, 0.7, pch = 1:2, legend = levels(GlaucomaM$Class), |
|
|
531 |
+ bty = "n") |
|
|
532 |
|
|
|
533 |
> data("GBSG2", package = "TH.data") |
|
|
534 |
|
|
|
535 |
> stree <- ctree(Surv(time, cens) ~ ., data = GBSG2) |
|
|
536 |
|
|
|
537 |
> plot(stree) |
|
|
538 |
|
|
|
539 |
> treeresponse(stree, newdata = GBSG2[1:2, ]) |
|
|
540 |
[[1]] |
|
|
541 |
Call: survfit(formula = y ~ 1, weights = weights) |
|
|
542 |
|
|
|
543 |
records n.max n.start events median 0.95LCL 0.95UCL |
|
|
544 |
248 248 248 88 2093 1814 NA |
|
|
545 |
|
|
|
546 |
[[2]] |
|
|
547 |
Call: survfit(formula = y ~ 1, weights = weights) |
|
|
548 |
|
|
|
549 |
records n.max n.start events median 0.95LCL 0.95UCL |
|
|
550 |
166 166 166 77 1701 1174 2018 |
|
|
551 |
|
|
|
552 |
|
|
|
553 |
> data("mammoexp", package = "TH.data") |
|
|
554 |
|
|
|
555 |
> mtree <- ctree(ME ~ ., data = mammoexp) |
|
|
556 |
|
|
|
557 |
> plot(mtree) |
|
|
558 |
|
|
|
559 |
*** Run successfully completed *** |
|
|
560 |
> proc.time() |
|
|
561 |
user system elapsed |
|
|
562 |
1.404 0.056 1.457 |