|
a |
|
b/partyMod/tests/mob.Rout.save |
|
|
1 |
|
|
|
2 |
R Under development (unstable) (2014-06-29 r66051) -- "Unsuffered Consequences" |
|
|
3 |
Copyright (C) 2014 The R Foundation for Statistical Computing |
|
|
4 |
Platform: x86_64-unknown-linux-gnu (64-bit) |
|
|
5 |
|
|
|
6 |
R is free software and comes with ABSOLUTELY NO WARRANTY. |
|
|
7 |
You are welcome to redistribute it under certain conditions. |
|
|
8 |
Type 'license()' or 'licence()' for distribution details. |
|
|
9 |
|
|
|
10 |
R is a collaborative project with many contributors. |
|
|
11 |
Type 'contributors()' for more information and |
|
|
12 |
'citation()' on how to cite R or R packages in publications. |
|
|
13 |
|
|
|
14 |
Type 'demo()' for some demos, 'help()' for on-line help, or |
|
|
15 |
'help.start()' for an HTML browser interface to help. |
|
|
16 |
Type 'q()' to quit R. |
|
|
17 |
|
|
|
18 |
> library("party") |
|
|
19 |
Loading required package: grid |
|
|
20 |
Loading required package: zoo |
|
|
21 |
|
|
|
22 |
Attaching package: 'zoo' |
|
|
23 |
|
|
|
24 |
The following objects are masked from 'package:base': |
|
|
25 |
|
|
|
26 |
as.Date, as.Date.numeric |
|
|
27 |
|
|
|
28 |
Loading required package: sandwich |
|
|
29 |
Loading required package: strucchange |
|
|
30 |
Loading required package: modeltools |
|
|
31 |
Loading required package: stats4 |
|
|
32 |
> |
|
|
33 |
> data("BostonHousing", package = "mlbench") |
|
|
34 |
> BostonHousing$lstat <- log(BostonHousing$lstat) |
|
|
35 |
> BostonHousing$rm <- BostonHousing$rm^2 |
|
|
36 |
> BostonHousing$chas <- factor(BostonHousing$chas, levels = 0:1, labels = c("no", "yes")) |
|
|
37 |
> BostonHousing$rad <- factor(BostonHousing$rad, ordered = TRUE) |
|
|
38 |
> fmBH <- mob(medv ~ lstat + rm | zn + indus + chas + nox + age + dis + rad + tax + crim + b + ptratio, |
|
|
39 |
+ control = mob_control(minsplit = 40, verbose = TRUE), |
|
|
40 |
+ data = BostonHousing, model = linearModel) |
|
|
41 |
|
|
|
42 |
------------------------------------------- |
|
|
43 |
Fluctuation tests of splitting variables: |
|
|
44 |
zn indus chas nox age |
|
|
45 |
statistic 3.363356e+01 6.532322e+01 2.275635e+01 8.136281e+01 3.675850e+01 |
|
|
46 |
p.value 1.023987e-04 1.363602e-11 4.993053e-04 3.489797e-15 2.263798e-05 |
|
|
47 |
dis rad tax crim b |
|
|
48 |
statistic 6.848533e+01 1.153641e+02 9.068440e+01 8.655065e+01 3.627629e+01 |
|
|
49 |
p.value 2.693904e-12 7.087680e-13 2.735524e-17 2.356348e-16 2.860686e-05 |
|
|
50 |
ptratio |
|
|
51 |
statistic 7.221524e+01 |
|
|
52 |
p.value 3.953623e-13 |
|
|
53 |
|
|
|
54 |
Best splitting variable: tax |
|
|
55 |
Perform split? yes |
|
|
56 |
------------------------------------------- |
|
|
57 |
|
|
|
58 |
Node properties: |
|
|
59 |
tax <= 432; criterion = 1, statistic = 115.364 |
|
|
60 |
|
|
|
61 |
------------------------------------------- |
|
|
62 |
Fluctuation tests of splitting variables: |
|
|
63 |
zn indus chas nox age |
|
|
64 |
statistic 27.785009791 21.3329346 8.0272421 23.774323202 11.9204284 |
|
|
65 |
p.value 0.001494064 0.0285193 0.4005192 0.009518732 0.7666366 |
|
|
66 |
dis rad tax crim b |
|
|
67 |
statistic 24.268011081 50.481593270 3.523250e+01 3.276813e+01 9.0363245 |
|
|
68 |
p.value 0.007601532 0.003437763 4.275527e-05 1.404487e-04 0.9871502 |
|
|
69 |
ptratio |
|
|
70 |
statistic 4.510680e+01 |
|
|
71 |
p.value 3.309747e-07 |
|
|
72 |
|
|
|
73 |
Best splitting variable: ptratio |
|
|
74 |
Perform split? yes |
|
|
75 |
------------------------------------------- |
|
|
76 |
|
|
|
77 |
Node properties: |
|
|
78 |
ptratio <= 15.2; criterion = 1, statistic = 50.482 |
|
|
79 |
|
|
|
80 |
------------------------------------------- |
|
|
81 |
Fluctuation tests of splitting variables: |
|
|
82 |
zn indus chas nox age |
|
|
83 |
statistic 3.233350e+01 22.26864036 12.93407112 22.10510234 20.41295354 |
|
|
84 |
p.value 1.229678e-04 0.01504788 0.05259509 0.01622098 0.03499731 |
|
|
85 |
dis rad tax crim b |
|
|
86 |
statistic 17.7204735 5.526565e+01 2.879128e+01 20.28503194 6.5549665 |
|
|
87 |
p.value 0.1091769 7.112214e-04 6.916307e-04 0.03706934 0.9999522 |
|
|
88 |
ptratio |
|
|
89 |
statistic 4.789850e+01 |
|
|
90 |
p.value 4.738855e-08 |
|
|
91 |
|
|
|
92 |
Best splitting variable: ptratio |
|
|
93 |
Perform split? yes |
|
|
94 |
------------------------------------------- |
|
|
95 |
|
|
|
96 |
Node properties: |
|
|
97 |
ptratio <= 19.6; criterion = 1, statistic = 55.266 |
|
|
98 |
|
|
|
99 |
------------------------------------------- |
|
|
100 |
Fluctuation tests of splitting variables: |
|
|
101 |
zn indus chas nox age dis |
|
|
102 |
statistic 14.971474 14.6477733 7.1172962 14.3455158 8.2176363 16.1112185 |
|
|
103 |
p.value 0.280361 0.3134649 0.5405005 0.3467974 0.9906672 0.1847818 |
|
|
104 |
rad tax crim b ptratio |
|
|
105 |
statistic 43.17824350 3.447271e+01 9.340075 8.7773142 10.8469969 |
|
|
106 |
p.value 0.03281124 4.281939e-05 0.952996 0.9772696 0.8202694 |
|
|
107 |
|
|
|
108 |
Best splitting variable: tax |
|
|
109 |
Perform split? yes |
|
|
110 |
------------------------------------------- |
|
|
111 |
|
|
|
112 |
Node properties: |
|
|
113 |
tax <= 265; criterion = 1, statistic = 43.178 |
|
|
114 |
|
|
|
115 |
------------------------------------------- |
|
|
116 |
Fluctuation tests of splitting variables: |
|
|
117 |
zn indus chas nox age dis |
|
|
118 |
statistic 11.998039 7.3971233 7.227770 9.2936189 14.3023962 8.9239826 |
|
|
119 |
p.value 0.574642 0.9931875 0.522447 0.9119621 0.2886603 0.9389895 |
|
|
120 |
rad tax crim b ptratio |
|
|
121 |
statistic 33.1746444 16.6666129 11.7143758 9.9050903 11.5927528 |
|
|
122 |
p.value 0.3926249 0.1206412 0.6153455 0.8539893 0.6328381 |
|
|
123 |
|
|
|
124 |
Best splitting variable: tax |
|
|
125 |
Perform split? no |
|
|
126 |
------------------------------------------- |
|
|
127 |
|
|
|
128 |
------------------------------------------- |
|
|
129 |
Fluctuation tests of splitting variables: |
|
|
130 |
zn indus chas nox age dis |
|
|
131 |
statistic 10.9187926 9.0917078 2.754081e+01 17.39203006 4.6282349 11.9581600 |
|
|
132 |
p.value 0.7091039 0.9172303 4.987667e-05 0.08922543 0.9999992 0.5607267 |
|
|
133 |
rad tax crim b ptratio |
|
|
134 |
statistic 0.2557803 10.9076165 3.711175 3.158329 9.8865054 |
|
|
135 |
p.value 1.0000000 0.7106612 1.000000 1.000000 0.8410064 |
|
|
136 |
|
|
|
137 |
Best splitting variable: chas |
|
|
138 |
Perform split? yes |
|
|
139 |
------------------------------------------- |
|
|
140 |
|
|
|
141 |
Splitting factor variable, objective function: |
|
|
142 |
no |
|
|
143 |
Inf |
|
|
144 |
|
|
|
145 |
No admissable split found in 'chas' |
|
|
146 |
> fmBH |
|
|
147 |
1) tax <= 432; criterion = 1, statistic = 115.364 |
|
|
148 |
2) ptratio <= 15.2; criterion = 1, statistic = 50.482 |
|
|
149 |
3)* weights = 72 |
|
|
150 |
Terminal node model |
|
|
151 |
Linear model with coefficients: |
|
|
152 |
(Intercept) lstat rm |
|
|
153 |
9.2349 -4.9391 0.6859 |
|
|
154 |
|
|
|
155 |
2) ptratio > 15.2 |
|
|
156 |
4) ptratio <= 19.6; criterion = 1, statistic = 55.266 |
|
|
157 |
5) tax <= 265; criterion = 1, statistic = 43.178 |
|
|
158 |
6)* weights = 63 |
|
|
159 |
Terminal node model |
|
|
160 |
Linear model with coefficients: |
|
|
161 |
(Intercept) lstat rm |
|
|
162 |
3.9637 -2.7663 0.6881 |
|
|
163 |
|
|
|
164 |
5) tax > 265 |
|
|
165 |
7)* weights = 162 |
|
|
166 |
Terminal node model |
|
|
167 |
Linear model with coefficients: |
|
|
168 |
(Intercept) lstat rm |
|
|
169 |
-1.7984 -0.2677 0.6539 |
|
|
170 |
|
|
|
171 |
4) ptratio > 19.6 |
|
|
172 |
8)* weights = 56 |
|
|
173 |
Terminal node model |
|
|
174 |
Linear model with coefficients: |
|
|
175 |
(Intercept) lstat rm |
|
|
176 |
17.5865 -4.6190 0.3387 |
|
|
177 |
|
|
|
178 |
1) tax > 432 |
|
|
179 |
9)* weights = 153 |
|
|
180 |
Terminal node model |
|
|
181 |
Linear model with coefficients: |
|
|
182 |
(Intercept) lstat rm |
|
|
183 |
68.2971 -16.3540 -0.1478 |
|
|
184 |
|
|
|
185 |
> summary(fmBH) |
|
|
186 |
$`3` |
|
|
187 |
|
|
|
188 |
Call: |
|
|
189 |
NULL |
|
|
190 |
|
|
|
191 |
Weighted Residuals: |
|
|
192 |
Min 1Q Median 3Q Max |
|
|
193 |
-7.910 0.000 0.000 0.000 6.632 |
|
|
194 |
|
|
|
195 |
Coefficients: |
|
|
196 |
Estimate Std. Error t value Pr(>|t|) |
|
|
197 |
(Intercept) 9.23488 3.95128 2.337 0.0223 * |
|
|
198 |
lstat -4.93910 0.88285 -5.595 4.14e-07 *** |
|
|
199 |
rm 0.68591 0.05136 13.354 < 2e-16 *** |
|
|
200 |
--- |
|
|
201 |
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 |
|
|
202 |
|
|
|
203 |
Residual standard error: 3.413 on 69 degrees of freedom |
|
|
204 |
Multiple R-squared: 0.922, Adjusted R-squared: 0.9197 |
|
|
205 |
F-statistic: 407.8 on 2 and 69 DF, p-value: < 2.2e-16 |
|
|
206 |
|
|
|
207 |
|
|
|
208 |
$`6` |
|
|
209 |
|
|
|
210 |
Call: |
|
|
211 |
NULL |
|
|
212 |
|
|
|
213 |
Weighted Residuals: |
|
|
214 |
Min 1Q Median 3Q Max |
|
|
215 |
-4.614 0.000 0.000 0.000 12.473 |
|
|
216 |
|
|
|
217 |
Coefficients: |
|
|
218 |
Estimate Std. Error t value Pr(>|t|) |
|
|
219 |
(Intercept) 3.96372 5.00781 0.792 0.43177 |
|
|
220 |
lstat -2.76629 1.00406 -2.755 0.00776 ** |
|
|
221 |
rm 0.68813 0.07716 8.918 1.36e-12 *** |
|
|
222 |
--- |
|
|
223 |
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 |
|
|
224 |
|
|
|
225 |
Residual standard error: 3.2 on 60 degrees of freedom |
|
|
226 |
Multiple R-squared: 0.8176, Adjusted R-squared: 0.8115 |
|
|
227 |
F-statistic: 134.5 on 2 and 60 DF, p-value: < 2.2e-16 |
|
|
228 |
|
|
|
229 |
|
|
|
230 |
$`7` |
|
|
231 |
|
|
|
232 |
Call: |
|
|
233 |
NULL |
|
|
234 |
|
|
|
235 |
Weighted Residuals: |
|
|
236 |
Min 1Q Median 3Q Max |
|
|
237 |
-9.092 0.000 0.000 0.000 10.236 |
|
|
238 |
|
|
|
239 |
Coefficients: |
|
|
240 |
Estimate Std. Error t value Pr(>|t|) |
|
|
241 |
(Intercept) -1.79839 2.84702 -0.632 0.529 |
|
|
242 |
lstat -0.26771 0.69581 -0.385 0.701 |
|
|
243 |
rm 0.65389 0.03757 17.404 <2e-16 *** |
|
|
244 |
--- |
|
|
245 |
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 |
|
|
246 |
|
|
|
247 |
Residual standard error: 2.652 on 159 degrees of freedom |
|
|
248 |
Multiple R-squared: 0.8173, Adjusted R-squared: 0.815 |
|
|
249 |
F-statistic: 355.6 on 2 and 159 DF, p-value: < 2.2e-16 |
|
|
250 |
|
|
|
251 |
|
|
|
252 |
$`8` |
|
|
253 |
|
|
|
254 |
Call: |
|
|
255 |
NULL |
|
|
256 |
|
|
|
257 |
Weighted Residuals: |
|
|
258 |
Min 1Q Median 3Q Max |
|
|
259 |
-8.466 0.000 0.000 0.000 4.947 |
|
|
260 |
|
|
|
261 |
Coefficients: |
|
|
262 |
Estimate Std. Error t value Pr(>|t|) |
|
|
263 |
(Intercept) 17.58649 4.21666 4.171 0.000113 *** |
|
|
264 |
lstat -4.61897 0.84025 -5.497 1.13e-06 *** |
|
|
265 |
rm 0.33867 0.07574 4.472 4.13e-05 *** |
|
|
266 |
--- |
|
|
267 |
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 |
|
|
268 |
|
|
|
269 |
Residual standard error: 2.197 on 53 degrees of freedom |
|
|
270 |
Multiple R-squared: 0.6446, Adjusted R-squared: 0.6312 |
|
|
271 |
F-statistic: 48.07 on 2 and 53 DF, p-value: 1.238e-12 |
|
|
272 |
|
|
|
273 |
|
|
|
274 |
$`9` |
|
|
275 |
|
|
|
276 |
Call: |
|
|
277 |
NULL |
|
|
278 |
|
|
|
279 |
Weighted Residuals: |
|
|
280 |
Min 1Q Median 3Q Max |
|
|
281 |
-10.56 0.00 0.00 0.00 24.28 |
|
|
282 |
|
|
|
283 |
Coefficients: |
|
|
284 |
Estimate Std. Error t value Pr(>|t|) |
|
|
285 |
(Intercept) 68.29709 3.83284 17.819 < 2e-16 *** |
|
|
286 |
lstat -16.35401 0.96577 -16.934 < 2e-16 *** |
|
|
287 |
rm -0.14779 0.05047 -2.928 0.00394 ** |
|
|
288 |
--- |
|
|
289 |
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 |
|
|
290 |
|
|
|
291 |
Residual standard error: 4.689 on 150 degrees of freedom |
|
|
292 |
Multiple R-squared: 0.6649, Adjusted R-squared: 0.6604 |
|
|
293 |
F-statistic: 148.8 on 2 and 150 DF, p-value: < 2.2e-16 |
|
|
294 |
|
|
|
295 |
|
|
|
296 |
> |
|
|
297 |
> ### check for one-node tree |
|
|
298 |
> fmBH <- try(mob(medv ~ lstat + rm | zn, control = mob_control(minsplit = 4000, verbose = TRUE), |
|
|
299 |
+ data = BostonHousing, model = linearModel)) |
|
|
300 |
> stopifnot(class(fmBH) != "try-error") |
|
|
301 |
> |
|
|
302 |
> |
|
|
303 |
> data("PimaIndiansDiabetes", package = "mlbench") |
|
|
304 |
> fmPID <- mob(diabetes ~ glucose | pregnant + pressure + triceps + insulin + mass + pedigree + age, |
|
|
305 |
+ control = mob_control(verbose = TRUE), |
|
|
306 |
+ data = PimaIndiansDiabetes, model = glinearModel, family = binomial()) |
|
|
307 |
|
|
|
308 |
------------------------------------------- |
|
|
309 |
Fluctuation tests of splitting variables: |
|
|
310 |
pregnant pressure triceps insulin mass pedigree |
|
|
311 |
statistic 2.988542e+01 7.5024235 15.94095417 6.5969297 4.880982e+01 18.33476114 |
|
|
312 |
p.value 9.778517e-05 0.9104325 0.06660773 0.9701412 8.316815e-09 0.02275017 |
|
|
313 |
age |
|
|
314 |
statistic 4.351412e+01 |
|
|
315 |
p.value 1.182811e-07 |
|
|
316 |
|
|
|
317 |
Best splitting variable: mass |
|
|
318 |
Perform split? yes |
|
|
319 |
------------------------------------------- |
|
|
320 |
|
|
|
321 |
Node properties: |
|
|
322 |
mass <= 26.3; criterion = 1, statistic = 48.81 |
|
|
323 |
|
|
|
324 |
------------------------------------------- |
|
|
325 |
Fluctuation tests of splitting variables: |
|
|
326 |
pregnant pressure triceps insulin mass pedigree age |
|
|
327 |
statistic 10.3924070 4.353740 5.911229 3.7855726 10.4748907 3.6263026 6.0978662 |
|
|
328 |
p.value 0.4903221 0.999824 0.986895 0.9999888 0.4785454 0.9999958 0.9817742 |
|
|
329 |
|
|
|
330 |
Best splitting variable: mass |
|
|
331 |
Perform split? no |
|
|
332 |
------------------------------------------- |
|
|
333 |
|
|
|
334 |
------------------------------------------- |
|
|
335 |
Fluctuation tests of splitting variables: |
|
|
336 |
pregnant pressure triceps insulin mass pedigree |
|
|
337 |
statistic 2.673912e+01 6.1757583 7.346804 7.8963977 9.1545915 17.96438828 |
|
|
338 |
p.value 4.434356e-04 0.9845137 0.922646 0.8700398 0.7033477 0.02677105 |
|
|
339 |
age |
|
|
340 |
statistic 3.498466e+01 |
|
|
341 |
p.value 8.098640e-06 |
|
|
342 |
|
|
|
343 |
Best splitting variable: age |
|
|
344 |
Perform split? yes |
|
|
345 |
------------------------------------------- |
|
|
346 |
|
|
|
347 |
Node properties: |
|
|
348 |
age <= 30; criterion = 1, statistic = 34.985 |
|
|
349 |
|
|
|
350 |
------------------------------------------- |
|
|
351 |
Fluctuation tests of splitting variables: |
|
|
352 |
pregnant pressure triceps insulin mass pedigree age |
|
|
353 |
statistic 4.3749991 9.4006532 7.661457 9.0583568 5.4287861 5.640420 6.3088818 |
|
|
354 |
p.value 0.9998989 0.6656073 0.893893 0.7168659 0.9967316 0.994611 0.9804133 |
|
|
355 |
|
|
|
356 |
Best splitting variable: pressure |
|
|
357 |
Perform split? no |
|
|
358 |
------------------------------------------- |
|
|
359 |
|
|
|
360 |
------------------------------------------- |
|
|
361 |
Fluctuation tests of splitting variables: |
|
|
362 |
pregnant pressure triceps insulin mass pedigree |
|
|
363 |
statistic 7.7282903 1.935271 3.6078314 4.9703223 10.136944 11.9004129 |
|
|
364 |
p.value 0.8882324 1.000000 0.9999987 0.9991162 0.555382 0.3205095 |
|
|
365 |
age |
|
|
366 |
statistic 10.1330698 |
|
|
367 |
p.value 0.5559631 |
|
|
368 |
|
|
|
369 |
Best splitting variable: pedigree |
|
|
370 |
Perform split? no |
|
|
371 |
------------------------------------------- |
|
|
372 |
> fmPID |
|
|
373 |
1) mass <= 26.3; criterion = 1, statistic = 48.81 |
|
|
374 |
2)* weights = 167 |
|
|
375 |
Terminal node model |
|
|
376 |
Binomial GLM with coefficients: |
|
|
377 |
(Intercept) glucose |
|
|
378 |
-9.95151 0.05871 |
|
|
379 |
|
|
|
380 |
1) mass > 26.3 |
|
|
381 |
3) age <= 30; criterion = 1, statistic = 34.985 |
|
|
382 |
4)* weights = 304 |
|
|
383 |
Terminal node model |
|
|
384 |
Binomial GLM with coefficients: |
|
|
385 |
(Intercept) glucose |
|
|
386 |
-6.70559 0.04684 |
|
|
387 |
|
|
|
388 |
3) age > 30 |
|
|
389 |
5)* weights = 297 |
|
|
390 |
Terminal node model |
|
|
391 |
Binomial GLM with coefficients: |
|
|
392 |
(Intercept) glucose |
|
|
393 |
-2.77095 0.02354 |
|
|
394 |
|
|
|
395 |
> summary(fmPID) |
|
|
396 |
$`2` |
|
|
397 |
|
|
|
398 |
Call: |
|
|
399 |
NULL |
|
|
400 |
|
|
|
401 |
Deviance Residuals: |
|
|
402 |
Min 1Q Median 3Q Max |
|
|
403 |
-1.817 0.000 0.000 0.000 2.718 |
|
|
404 |
|
|
|
405 |
Coefficients: |
|
|
406 |
Estimate Std. Error z value Pr(>|z|) |
|
|
407 |
(Intercept) -9.95151 1.74013 -5.719 1.07e-08 *** |
|
|
408 |
glucose 0.05871 0.01211 4.846 1.26e-06 *** |
|
|
409 |
--- |
|
|
410 |
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 |
|
|
411 |
|
|
|
412 |
(Dispersion parameter for binomial family taken to be 1) |
|
|
413 |
|
|
|
414 |
Null deviance: 96.202 on 166 degrees of freedom |
|
|
415 |
Residual deviance: 60.502 on 165 degrees of freedom |
|
|
416 |
AIC: 64.502 |
|
|
417 |
|
|
|
418 |
Number of Fisher Scoring iterations: 6 |
|
|
419 |
|
|
|
420 |
|
|
|
421 |
$`4` |
|
|
422 |
|
|
|
423 |
Call: |
|
|
424 |
NULL |
|
|
425 |
|
|
|
426 |
Deviance Residuals: |
|
|
427 |
Min 1Q Median 3Q Max |
|
|
428 |
-1.9438 -0.3484 0.0000 0.0000 2.4893 |
|
|
429 |
|
|
|
430 |
Coefficients: |
|
|
431 |
Estimate Std. Error z value Pr(>|z|) |
|
|
432 |
(Intercept) -6.705586 0.800193 -8.380 < 2e-16 *** |
|
|
433 |
glucose 0.046837 0.006208 7.544 4.54e-14 *** |
|
|
434 |
--- |
|
|
435 |
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 |
|
|
436 |
|
|
|
437 |
(Dispersion parameter for binomial family taken to be 1) |
|
|
438 |
|
|
|
439 |
Null deviance: 364.01 on 303 degrees of freedom |
|
|
440 |
Residual deviance: 280.98 on 302 degrees of freedom |
|
|
441 |
AIC: 284.98 |
|
|
442 |
|
|
|
443 |
Number of Fisher Scoring iterations: 5 |
|
|
444 |
|
|
|
445 |
|
|
|
446 |
$`5` |
|
|
447 |
|
|
|
448 |
Call: |
|
|
449 |
NULL |
|
|
450 |
|
|
|
451 |
Deviance Residuals: |
|
|
452 |
Min 1Q Median 3Q Max |
|
|
453 |
-2.005 0.000 0.000 0.000 2.380 |
|
|
454 |
|
|
|
455 |
Coefficients: |
|
|
456 |
Estimate Std. Error z value Pr(>|z|) |
|
|
457 |
(Intercept) -2.770954 0.548241 -5.054 4.32e-07 *** |
|
|
458 |
glucose 0.023536 0.004202 5.601 2.13e-08 *** |
|
|
459 |
--- |
|
|
460 |
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 |
|
|
461 |
|
|
|
462 |
(Dispersion parameter for binomial family taken to be 1) |
|
|
463 |
|
|
|
464 |
Null deviance: 407.11 on 296 degrees of freedom |
|
|
465 |
Residual deviance: 369.43 on 295 degrees of freedom |
|
|
466 |
AIC: 373.43 |
|
|
467 |
|
|
|
468 |
Number of Fisher Scoring iterations: 4 |
|
|
469 |
|
|
|
470 |
|
|
|
471 |
> |
|
|
472 |
> |
|
|
473 |
> proc.time() |
|
|
474 |
user system elapsed |
|
|
475 |
3.252 0.076 3.332 |