|
a |
|
b/partyMod/tests/TreeGrow-regtest.Rout.save |
|
|
1 |
|
|
|
2 |
R Under development (unstable) (2014-06-29 r66051) -- "Unsuffered Consequences" |
|
|
3 |
Copyright (C) 2014 The R Foundation for Statistical Computing |
|
|
4 |
Platform: x86_64-unknown-linux-gnu (64-bit) |
|
|
5 |
|
|
|
6 |
R is free software and comes with ABSOLUTELY NO WARRANTY. |
|
|
7 |
You are welcome to redistribute it under certain conditions. |
|
|
8 |
Type 'license()' or 'licence()' for distribution details. |
|
|
9 |
|
|
|
10 |
R is a collaborative project with many contributors. |
|
|
11 |
Type 'contributors()' for more information and |
|
|
12 |
'citation()' on how to cite R or R packages in publications. |
|
|
13 |
|
|
|
14 |
Type 'demo()' for some demos, 'help()' for on-line help, or |
|
|
15 |
'help.start()' for an HTML browser interface to help. |
|
|
16 |
Type 'q()' to quit R. |
|
|
17 |
|
|
|
18 |
> |
|
|
19 |
> set.seed(290875) |
|
|
20 |
> library("party") |
|
|
21 |
Loading required package: grid |
|
|
22 |
Loading required package: zoo |
|
|
23 |
|
|
|
24 |
Attaching package: 'zoo' |
|
|
25 |
|
|
|
26 |
The following objects are masked from 'package:base': |
|
|
27 |
|
|
|
28 |
as.Date, as.Date.numeric |
|
|
29 |
|
|
|
30 |
Loading required package: sandwich |
|
|
31 |
Loading required package: strucchange |
|
|
32 |
Loading required package: modeltools |
|
|
33 |
Loading required package: stats4 |
|
|
34 |
> if (!require("TH.data")) |
|
|
35 |
+ stop("cannot load package TH.data") |
|
|
36 |
Loading required package: TH.data |
|
|
37 |
> if (!require("coin")) |
|
|
38 |
+ stop("cannot load package coin") |
|
|
39 |
Loading required package: coin |
|
|
40 |
Loading required package: survival |
|
|
41 |
Loading required package: splines |
|
|
42 |
> |
|
|
43 |
> ### get rid of the NAMESPACE |
|
|
44 |
> attach(asNamespace("party")) |
|
|
45 |
The following objects are masked from package:party: |
|
|
46 |
|
|
|
47 |
cforest, cforest_classical, cforest_control, cforest_unbiased, |
|
|
48 |
conditionalTree, ctree, ctree_control, ctree_memory, edge_simple, |
|
|
49 |
mob, mob_control, node_barplot, node_bivplot, node_boxplot, |
|
|
50 |
node_density, node_hist, node_inner, node_scatterplot, node_surv, |
|
|
51 |
node_terminal, proximity, ptrafo, reweight, sctest.mob, varimp, |
|
|
52 |
varimpAUC |
|
|
53 |
|
|
|
54 |
> |
|
|
55 |
> gtctrl <- new("GlobalTestControl") |
|
|
56 |
> tlev <- levels(gtctrl@testtype) |
|
|
57 |
> |
|
|
58 |
> data(GlaucomaM, package = "TH.data") |
|
|
59 |
> gtree <- ctree(Class ~ ., data = GlaucomaM) |
|
|
60 |
> tree <- gtree@tree |
|
|
61 |
> stopifnot(isequal(tree[[5]][[3]], 0.059)) |
|
|
62 |
> predict(gtree) |
|
|
63 |
[1] normal normal normal normal normal normal normal normal |
|
|
64 |
[9] normal normal normal glaucoma normal normal normal normal |
|
|
65 |
[17] normal normal normal normal normal normal normal normal |
|
|
66 |
[25] normal normal normal normal normal normal normal normal |
|
|
67 |
[33] normal normal glaucoma normal normal normal normal normal |
|
|
68 |
[41] normal normal glaucoma normal normal normal normal normal |
|
|
69 |
[49] normal normal normal normal normal normal normal normal |
|
|
70 |
[57] normal normal normal normal normal normal normal normal |
|
|
71 |
[65] normal normal normal normal normal glaucoma normal normal |
|
|
72 |
[73] normal normal normal normal normal normal normal normal |
|
|
73 |
[81] glaucoma normal normal normal normal normal normal normal |
|
|
74 |
[89] normal normal normal normal normal normal normal normal |
|
|
75 |
[97] normal normal glaucoma glaucoma glaucoma glaucoma normal normal |
|
|
76 |
[105] normal normal normal glaucoma glaucoma normal glaucoma glaucoma |
|
|
77 |
[113] glaucoma glaucoma glaucoma glaucoma glaucoma normal normal glaucoma |
|
|
78 |
[121] glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma normal glaucoma |
|
|
79 |
[129] normal glaucoma normal glaucoma glaucoma glaucoma glaucoma glaucoma |
|
|
80 |
[137] glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma |
|
|
81 |
[145] glaucoma glaucoma normal glaucoma glaucoma glaucoma glaucoma normal |
|
|
82 |
[153] glaucoma glaucoma glaucoma glaucoma normal glaucoma glaucoma glaucoma |
|
|
83 |
[161] glaucoma glaucoma normal normal glaucoma glaucoma normal glaucoma |
|
|
84 |
[169] glaucoma glaucoma glaucoma glaucoma normal glaucoma glaucoma glaucoma |
|
|
85 |
[177] normal glaucoma normal glaucoma glaucoma glaucoma normal glaucoma |
|
|
86 |
[185] glaucoma glaucoma normal glaucoma glaucoma normal glaucoma normal |
|
|
87 |
[193] glaucoma glaucoma glaucoma glaucoma |
|
|
88 |
Levels: glaucoma normal |
|
|
89 |
> |
|
|
90 |
> # print(tree) |
|
|
91 |
> |
|
|
92 |
> stump <- ctree(Class ~ ., data = GlaucomaM, |
|
|
93 |
+ control = ctree_control(stump = TRUE)) |
|
|
94 |
> print(stump) |
|
|
95 |
|
|
|
96 |
Conditional inference tree with 2 terminal nodes |
|
|
97 |
|
|
|
98 |
Response: Class |
|
|
99 |
Inputs: ag, at, as, an, ai, eag, eat, eas, ean, eai, abrg, abrt, abrs, abrn, abri, hic, mhcg, mhct, mhcs, mhcn, mhci, phcg, phct, phcs, phcn, phci, hvc, vbsg, vbst, vbss, vbsn, vbsi, vasg, vast, vass, vasn, vasi, vbrg, vbrt, vbrs, vbrn, vbri, varg, vart, vars, varn, vari, mdg, mdt, mds, mdn, mdi, tmg, tmt, tms, tmn, tmi, mr, rnf, mdic, emd, mv |
|
|
100 |
Number of observations: 196 |
|
|
101 |
|
|
|
102 |
1) vari <= 0.059; criterion = 1, statistic = 71.475 |
|
|
103 |
2)* weights = 87 |
|
|
104 |
1) vari > 0.059 |
|
|
105 |
3)* weights = 109 |
|
|
106 |
> |
|
|
107 |
> data(treepipit, package = "coin") |
|
|
108 |
> |
|
|
109 |
> tr <- ctree(counts ~ ., data = treepipit) |
|
|
110 |
> tr |
|
|
111 |
|
|
|
112 |
Conditional inference tree with 2 terminal nodes |
|
|
113 |
|
|
|
114 |
Response: counts |
|
|
115 |
Inputs: age, coverstorey, coverregen, meanregen, coniferous, deadtree, cbpiles, ivytree, fdist |
|
|
116 |
Number of observations: 86 |
|
|
117 |
|
|
|
118 |
1) coverstorey <= 40; criterion = 0.998, statistic = 13.678 |
|
|
119 |
2)* weights = 24 |
|
|
120 |
1) coverstorey > 40 |
|
|
121 |
3)* weights = 62 |
|
|
122 |
> plot(tr) |
|
|
123 |
> |
|
|
124 |
> |
|
|
125 |
> data(GlaucomaM, package = "TH.data") |
|
|
126 |
> |
|
|
127 |
> tr <- ctree(Class ~ ., data = GlaucomaM) |
|
|
128 |
> tr |
|
|
129 |
|
|
|
130 |
Conditional inference tree with 4 terminal nodes |
|
|
131 |
|
|
|
132 |
Response: Class |
|
|
133 |
Inputs: ag, at, as, an, ai, eag, eat, eas, ean, eai, abrg, abrt, abrs, abrn, abri, hic, mhcg, mhct, mhcs, mhcn, mhci, phcg, phct, phcs, phcn, phci, hvc, vbsg, vbst, vbss, vbsn, vbsi, vasg, vast, vass, vasn, vasi, vbrg, vbrt, vbrs, vbrn, vbri, varg, vart, vars, varn, vari, mdg, mdt, mds, mdn, mdi, tmg, tmt, tms, tmn, tmi, mr, rnf, mdic, emd, mv |
|
|
134 |
Number of observations: 196 |
|
|
135 |
|
|
|
136 |
1) vari <= 0.059; criterion = 1, statistic = 71.475 |
|
|
137 |
2) vasg <= 0.066; criterion = 1, statistic = 29.265 |
|
|
138 |
3)* weights = 79 |
|
|
139 |
2) vasg > 0.066 |
|
|
140 |
4)* weights = 8 |
|
|
141 |
1) vari > 0.059 |
|
|
142 |
5) tms <= -0.066; criterion = 0.951, statistic = 11.221 |
|
|
143 |
6)* weights = 65 |
|
|
144 |
5) tms > -0.066 |
|
|
145 |
7)* weights = 44 |
|
|
146 |
> plot(tr) |
|
|
147 |
> |
|
|
148 |
> data(GBSG2, package = "TH.data") |
|
|
149 |
> |
|
|
150 |
> GBSG2tree <- ctree(Surv(time, cens) ~ ., data = GBSG2) |
|
|
151 |
> GBSG2tree |
|
|
152 |
|
|
|
153 |
Conditional inference tree with 4 terminal nodes |
|
|
154 |
|
|
|
155 |
Response: Surv(time, cens) |
|
|
156 |
Inputs: horTh, age, menostat, tsize, tgrade, pnodes, progrec, estrec |
|
|
157 |
Number of observations: 686 |
|
|
158 |
|
|
|
159 |
1) pnodes <= 3; criterion = 1, statistic = 56.156 |
|
|
160 |
2) horTh == {no}; criterion = 0.965, statistic = 8.113 |
|
|
161 |
3)* weights = 248 |
|
|
162 |
2) horTh == {yes} |
|
|
163 |
4)* weights = 128 |
|
|
164 |
1) pnodes > 3 |
|
|
165 |
5) progrec <= 20; criterion = 0.999, statistic = 14.941 |
|
|
166 |
6)* weights = 144 |
|
|
167 |
5) progrec > 20 |
|
|
168 |
7)* weights = 166 |
|
|
169 |
> plot(GBSG2tree) |
|
|
170 |
> plot(GBSG2tree, terminal_panel = node_surv(GBSG2tree)) |
|
|
171 |
> survfit(Surv(time, cens) ~ as.factor(GBSG2tree@where), data = GBSG2) |
|
|
172 |
Call: survfit(formula = Surv(time, cens) ~ as.factor(GBSG2tree@where), |
|
|
173 |
data = GBSG2) |
|
|
174 |
|
|
|
175 |
records n.max n.start events median 0.95LCL |
|
|
176 |
as.factor(GBSG2tree@where)=3 248 248 248 88 2093 1814 |
|
|
177 |
as.factor(GBSG2tree@where)=4 128 128 128 31 NA 2372 |
|
|
178 |
as.factor(GBSG2tree@where)=6 144 144 144 103 624 525 |
|
|
179 |
as.factor(GBSG2tree@where)=7 166 166 166 77 1701 1174 |
|
|
180 |
0.95UCL |
|
|
181 |
as.factor(GBSG2tree@where)=3 NA |
|
|
182 |
as.factor(GBSG2tree@where)=4 NA |
|
|
183 |
as.factor(GBSG2tree@where)=6 797 |
|
|
184 |
as.factor(GBSG2tree@where)=7 2018 |
|
|
185 |
> names(GBSG2) |
|
|
186 |
[1] "horTh" "age" "menostat" "tsize" "tgrade" "pnodes" |
|
|
187 |
[7] "progrec" "estrec" "time" "cens" |
|
|
188 |
> |
|
|
189 |
> tr <- ctree(Surv(time, cens) ~ ., data = GBSG2, |
|
|
190 |
+ control = ctree_control(teststat = "max", |
|
|
191 |
+ testtype = "Univariate")) |
|
|
192 |
There were 18 warnings (use warnings() to see them) |
|
|
193 |
> tr |
|
|
194 |
|
|
|
195 |
Conditional inference tree with 10 terminal nodes |
|
|
196 |
|
|
|
197 |
Response: Surv(time, cens) |
|
|
198 |
Inputs: horTh, age, menostat, tsize, tgrade, pnodes, progrec, estrec |
|
|
199 |
Number of observations: 686 |
|
|
200 |
|
|
|
201 |
1) pnodes <= 3; criterion = 1, statistic = 7.494 |
|
|
202 |
2) horTh == {no}; criterion = 0.996, statistic = 2.848 |
|
|
203 |
3) menostat == {Post}; criterion = 0.978, statistic = 2.286 |
|
|
204 |
4)* weights = 112 |
|
|
205 |
3) menostat == {Pre} |
|
|
206 |
5) age <= 37; criterion = 1, statistic = 3.858 |
|
|
207 |
6)* weights = 21 |
|
|
208 |
5) age > 37 |
|
|
209 |
7)* weights = 115 |
|
|
210 |
2) horTh == {yes} |
|
|
211 |
8) progrec <= 74; criterion = 0.975, statistic = 2.241 |
|
|
212 |
9)* weights = 73 |
|
|
213 |
8) progrec > 74 |
|
|
214 |
10)* weights = 55 |
|
|
215 |
1) pnodes > 3 |
|
|
216 |
11) progrec <= 20; criterion = 1, statistic = 3.865 |
|
|
217 |
12) pnodes <= 9; criterion = 0.991, statistic = 2.612 |
|
|
218 |
13)* weights = 87 |
|
|
219 |
12) pnodes > 9 |
|
|
220 |
14)* weights = 57 |
|
|
221 |
11) progrec > 20 |
|
|
222 |
15) horTh == {no}; criterion = 0.976, statistic = 2.251 |
|
|
223 |
16)* weights = 101 |
|
|
224 |
15) horTh == {yes} |
|
|
225 |
17) menostat == {Post}; criterion = 0.965, statistic = 2.105 |
|
|
226 |
18)* weights = 45 |
|
|
227 |
17) menostat == {Pre} |
|
|
228 |
19)* weights = 20 |
|
|
229 |
> plot(tr) |
|
|
230 |
> |
|
|
231 |
> data("mammoexp", package = "TH.data") |
|
|
232 |
> attr(mammoexp$ME, "scores") <- 1:3 |
|
|
233 |
> attr(mammoexp$SYMPT, "scores") <- 1:4 |
|
|
234 |
> attr(mammoexp$DECT, "scores") <- 1:3 |
|
|
235 |
> names(mammoexp)[names(mammoexp) == "SYMPT"] <- "symptoms" |
|
|
236 |
> names(mammoexp)[names(mammoexp) == "PB"] <- "benefit" |
|
|
237 |
> |
|
|
238 |
> names(mammoexp) |
|
|
239 |
[1] "ME" "symptoms" "benefit" "HIST" "BSE" "DECT" |
|
|
240 |
> tr <- ctree(ME ~ ., data = mammoexp) |
|
|
241 |
> tr |
|
|
242 |
|
|
|
243 |
Conditional inference tree with 3 terminal nodes |
|
|
244 |
|
|
|
245 |
Response: ME |
|
|
246 |
Inputs: symptoms, benefit, HIST, BSE, DECT |
|
|
247 |
Number of observations: 412 |
|
|
248 |
|
|
|
249 |
1) symptoms <= Agree; criterion = 1, statistic = 29.933 |
|
|
250 |
2)* weights = 113 |
|
|
251 |
1) symptoms > Agree |
|
|
252 |
3) benefit <= 8; criterion = 0.988, statistic = 9.17 |
|
|
253 |
4)* weights = 208 |
|
|
254 |
3) benefit > 8 |
|
|
255 |
5)* weights = 91 |
|
|
256 |
> plot(tr) |
|
|
257 |
> |
|
|
258 |
> treeresponse(tr, newdata = mammoexp[1:5,]) |
|
|
259 |
[[1]] |
|
|
260 |
[1] 0.3990385 0.3798077 0.2211538 |
|
|
261 |
|
|
|
262 |
[[2]] |
|
|
263 |
[1] 0.84070796 0.05309735 0.10619469 |
|
|
264 |
|
|
|
265 |
[[3]] |
|
|
266 |
[1] 0.3990385 0.3798077 0.2211538 |
|
|
267 |
|
|
|
268 |
[[4]] |
|
|
269 |
[1] 0.6153846 0.2087912 0.1758242 |
|
|
270 |
|
|
|
271 |
[[5]] |
|
|
272 |
[1] 0.3990385 0.3798077 0.2211538 |
|
|
273 |
|
|
|
274 |
> |
|
|
275 |
> ### check different user interfaces |
|
|
276 |
> data("iris") |
|
|
277 |
> x <- as.matrix(iris[,colnames(iris) != "Species"]) |
|
|
278 |
> y <- iris[,"Species"] |
|
|
279 |
> newx <- x |
|
|
280 |
> |
|
|
281 |
> ls <- LearningSample(x, y) |
|
|
282 |
> p1 <- unlist(treeresponse(ctree(Species ~ ., data = iris), newdata = as.data.frame(newx))) |
|
|
283 |
> p2 <- unlist(treeresponse(ctreefit(ls, control = ctree_control()), newdata = as.matrix(newx))) |
|
|
284 |
> stopifnot(identical(max(abs(p1 - p2)), 0)) |
|
|
285 |
> |
|
|
286 |
> set.seed(29) |
|
|
287 |
> p1 <- unlist(treeresponse(cforestfit(ls, control = cforest_unbiased(mtry = 1)), newdata = as.matrix(newx))) |
|
|
288 |
> set.seed(29) |
|
|
289 |
> p2 <- unlist(treeresponse(cforest(Species ~ ., data = iris, control = cforest_unbiased(mtry = 1)), |
|
|
290 |
+ newdata = as.data.frame(newx))) |
|
|
291 |
> stopifnot(identical(max(abs(p1 - p2)), 0)) |
|
|
292 |
> |
|
|
293 |
> proc.time() |
|
|
294 |
user system elapsed |
|
|
295 |
2.492 0.112 2.604 |