--- a +++ b/partyMod/tests/TreeGrow-regtest.Rout.save @@ -0,0 +1,295 @@ + +R Under development (unstable) (2014-06-29 r66051) -- "Unsuffered Consequences" +Copyright (C) 2014 The R Foundation for Statistical Computing +Platform: x86_64-unknown-linux-gnu (64-bit) + +R is free software and comes with ABSOLUTELY NO WARRANTY. +You are welcome to redistribute it under certain conditions. +Type 'license()' or 'licence()' for distribution details. + +R is a collaborative project with many contributors. +Type 'contributors()' for more information and +'citation()' on how to cite R or R packages in publications. + +Type 'demo()' for some demos, 'help()' for on-line help, or +'help.start()' for an HTML browser interface to help. +Type 'q()' to quit R. + +> +> set.seed(290875) +> library("party") +Loading required package: grid +Loading required package: zoo + +Attaching package: 'zoo' + +The following objects are masked from 'package:base': + + as.Date, as.Date.numeric + +Loading required package: sandwich +Loading required package: strucchange +Loading required package: modeltools +Loading required package: stats4 +> if (!require("TH.data")) ++ stop("cannot load package TH.data") +Loading required package: TH.data +> if (!require("coin")) ++ stop("cannot load package coin") +Loading required package: coin +Loading required package: survival +Loading required package: splines +> +> ### get rid of the NAMESPACE +> attach(asNamespace("party")) +The following objects are masked from package:party: + + cforest, cforest_classical, cforest_control, cforest_unbiased, + conditionalTree, ctree, ctree_control, ctree_memory, edge_simple, + mob, mob_control, node_barplot, node_bivplot, node_boxplot, + node_density, node_hist, node_inner, node_scatterplot, node_surv, + node_terminal, proximity, ptrafo, reweight, sctest.mob, varimp, + varimpAUC + +> +> gtctrl <- new("GlobalTestControl") +> tlev <- levels(gtctrl@testtype) +> +> data(GlaucomaM, package = "TH.data") +> gtree <- ctree(Class ~ ., data = GlaucomaM) +> tree <- gtree@tree +> stopifnot(isequal(tree[[5]][[3]], 0.059)) +> predict(gtree) + [1] normal normal normal normal normal normal normal normal + [9] normal normal normal glaucoma normal normal normal normal + [17] normal normal normal normal normal normal normal normal + [25] normal normal normal normal normal normal normal normal + [33] normal normal glaucoma normal normal normal normal normal + [41] normal normal glaucoma normal normal normal normal normal + [49] normal normal normal normal normal normal normal normal + [57] normal normal normal normal normal normal normal normal + [65] normal normal normal normal normal glaucoma normal normal + [73] normal normal normal normal normal normal normal normal + [81] glaucoma normal normal normal normal normal normal normal + [89] normal normal normal normal normal normal normal normal + [97] normal normal glaucoma glaucoma glaucoma glaucoma normal normal +[105] normal normal normal glaucoma glaucoma normal glaucoma glaucoma +[113] glaucoma glaucoma glaucoma glaucoma glaucoma normal normal glaucoma +[121] glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma normal glaucoma +[129] normal glaucoma normal glaucoma glaucoma glaucoma glaucoma glaucoma +[137] glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma glaucoma +[145] glaucoma glaucoma normal glaucoma glaucoma glaucoma glaucoma normal +[153] glaucoma glaucoma glaucoma glaucoma normal glaucoma glaucoma glaucoma +[161] glaucoma glaucoma normal normal glaucoma glaucoma normal glaucoma +[169] glaucoma glaucoma glaucoma glaucoma normal glaucoma glaucoma glaucoma +[177] normal glaucoma normal glaucoma glaucoma glaucoma normal glaucoma +[185] glaucoma glaucoma normal glaucoma glaucoma normal glaucoma normal +[193] glaucoma glaucoma glaucoma glaucoma +Levels: glaucoma normal +> +> # print(tree) +> +> stump <- ctree(Class ~ ., data = GlaucomaM, ++ control = ctree_control(stump = TRUE)) +> print(stump) + + Conditional inference tree with 2 terminal nodes + +Response: Class +Inputs: ag, at, as, an, ai, eag, eat, eas, ean, eai, abrg, abrt, abrs, abrn, abri, hic, mhcg, mhct, mhcs, mhcn, mhci, phcg, phct, phcs, phcn, phci, hvc, vbsg, vbst, vbss, vbsn, vbsi, vasg, vast, vass, vasn, vasi, vbrg, vbrt, vbrs, vbrn, vbri, varg, vart, vars, varn, vari, mdg, mdt, mds, mdn, mdi, tmg, tmt, tms, tmn, tmi, mr, rnf, mdic, emd, mv +Number of observations: 196 + +1) vari <= 0.059; criterion = 1, statistic = 71.475 + 2)* weights = 87 +1) vari > 0.059 + 3)* weights = 109 +> +> data(treepipit, package = "coin") +> +> tr <- ctree(counts ~ ., data = treepipit) +> tr + + Conditional inference tree with 2 terminal nodes + +Response: counts +Inputs: age, coverstorey, coverregen, meanregen, coniferous, deadtree, cbpiles, ivytree, fdist +Number of observations: 86 + +1) coverstorey <= 40; criterion = 0.998, statistic = 13.678 + 2)* weights = 24 +1) coverstorey > 40 + 3)* weights = 62 +> plot(tr) +> +> +> data(GlaucomaM, package = "TH.data") +> +> tr <- ctree(Class ~ ., data = GlaucomaM) +> tr + + Conditional inference tree with 4 terminal nodes + +Response: Class +Inputs: ag, at, as, an, ai, eag, eat, eas, ean, eai, abrg, abrt, abrs, abrn, abri, hic, mhcg, mhct, mhcs, mhcn, mhci, phcg, phct, phcs, phcn, phci, hvc, vbsg, vbst, vbss, vbsn, vbsi, vasg, vast, vass, vasn, vasi, vbrg, vbrt, vbrs, vbrn, vbri, varg, vart, vars, varn, vari, mdg, mdt, mds, mdn, mdi, tmg, tmt, tms, tmn, tmi, mr, rnf, mdic, emd, mv +Number of observations: 196 + +1) vari <= 0.059; criterion = 1, statistic = 71.475 + 2) vasg <= 0.066; criterion = 1, statistic = 29.265 + 3)* weights = 79 + 2) vasg > 0.066 + 4)* weights = 8 +1) vari > 0.059 + 5) tms <= -0.066; criterion = 0.951, statistic = 11.221 + 6)* weights = 65 + 5) tms > -0.066 + 7)* weights = 44 +> plot(tr) +> +> data(GBSG2, package = "TH.data") +> +> GBSG2tree <- ctree(Surv(time, cens) ~ ., data = GBSG2) +> GBSG2tree + + Conditional inference tree with 4 terminal nodes + +Response: Surv(time, cens) +Inputs: horTh, age, menostat, tsize, tgrade, pnodes, progrec, estrec +Number of observations: 686 + +1) pnodes <= 3; criterion = 1, statistic = 56.156 + 2) horTh == {no}; criterion = 0.965, statistic = 8.113 + 3)* weights = 248 + 2) horTh == {yes} + 4)* weights = 128 +1) pnodes > 3 + 5) progrec <= 20; criterion = 0.999, statistic = 14.941 + 6)* weights = 144 + 5) progrec > 20 + 7)* weights = 166 +> plot(GBSG2tree) +> plot(GBSG2tree, terminal_panel = node_surv(GBSG2tree)) +> survfit(Surv(time, cens) ~ as.factor(GBSG2tree@where), data = GBSG2) +Call: survfit(formula = Surv(time, cens) ~ as.factor(GBSG2tree@where), + data = GBSG2) + + records n.max n.start events median 0.95LCL +as.factor(GBSG2tree@where)=3 248 248 248 88 2093 1814 +as.factor(GBSG2tree@where)=4 128 128 128 31 NA 2372 +as.factor(GBSG2tree@where)=6 144 144 144 103 624 525 +as.factor(GBSG2tree@where)=7 166 166 166 77 1701 1174 + 0.95UCL +as.factor(GBSG2tree@where)=3 NA +as.factor(GBSG2tree@where)=4 NA +as.factor(GBSG2tree@where)=6 797 +as.factor(GBSG2tree@where)=7 2018 +> names(GBSG2) + [1] "horTh" "age" "menostat" "tsize" "tgrade" "pnodes" + [7] "progrec" "estrec" "time" "cens" +> +> tr <- ctree(Surv(time, cens) ~ ., data = GBSG2, ++ control = ctree_control(teststat = "max", ++ testtype = "Univariate")) +There were 18 warnings (use warnings() to see them) +> tr + + Conditional inference tree with 10 terminal nodes + +Response: Surv(time, cens) +Inputs: horTh, age, menostat, tsize, tgrade, pnodes, progrec, estrec +Number of observations: 686 + +1) pnodes <= 3; criterion = 1, statistic = 7.494 + 2) horTh == {no}; criterion = 0.996, statistic = 2.848 + 3) menostat == {Post}; criterion = 0.978, statistic = 2.286 + 4)* weights = 112 + 3) menostat == {Pre} + 5) age <= 37; criterion = 1, statistic = 3.858 + 6)* weights = 21 + 5) age > 37 + 7)* weights = 115 + 2) horTh == {yes} + 8) progrec <= 74; criterion = 0.975, statistic = 2.241 + 9)* weights = 73 + 8) progrec > 74 + 10)* weights = 55 +1) pnodes > 3 + 11) progrec <= 20; criterion = 1, statistic = 3.865 + 12) pnodes <= 9; criterion = 0.991, statistic = 2.612 + 13)* weights = 87 + 12) pnodes > 9 + 14)* weights = 57 + 11) progrec > 20 + 15) horTh == {no}; criterion = 0.976, statistic = 2.251 + 16)* weights = 101 + 15) horTh == {yes} + 17) menostat == {Post}; criterion = 0.965, statistic = 2.105 + 18)* weights = 45 + 17) menostat == {Pre} + 19)* weights = 20 +> plot(tr) +> +> data("mammoexp", package = "TH.data") +> attr(mammoexp$ME, "scores") <- 1:3 +> attr(mammoexp$SYMPT, "scores") <- 1:4 +> attr(mammoexp$DECT, "scores") <- 1:3 +> names(mammoexp)[names(mammoexp) == "SYMPT"] <- "symptoms" +> names(mammoexp)[names(mammoexp) == "PB"] <- "benefit" +> +> names(mammoexp) +[1] "ME" "symptoms" "benefit" "HIST" "BSE" "DECT" +> tr <- ctree(ME ~ ., data = mammoexp) +> tr + + Conditional inference tree with 3 terminal nodes + +Response: ME +Inputs: symptoms, benefit, HIST, BSE, DECT +Number of observations: 412 + +1) symptoms <= Agree; criterion = 1, statistic = 29.933 + 2)* weights = 113 +1) symptoms > Agree + 3) benefit <= 8; criterion = 0.988, statistic = 9.17 + 4)* weights = 208 + 3) benefit > 8 + 5)* weights = 91 +> plot(tr) +> +> treeresponse(tr, newdata = mammoexp[1:5,]) +[[1]] +[1] 0.3990385 0.3798077 0.2211538 + +[[2]] +[1] 0.84070796 0.05309735 0.10619469 + +[[3]] +[1] 0.3990385 0.3798077 0.2211538 + +[[4]] +[1] 0.6153846 0.2087912 0.1758242 + +[[5]] +[1] 0.3990385 0.3798077 0.2211538 + +> +> ### check different user interfaces +> data("iris") +> x <- as.matrix(iris[,colnames(iris) != "Species"]) +> y <- iris[,"Species"] +> newx <- x +> +> ls <- LearningSample(x, y) +> p1 <- unlist(treeresponse(ctree(Species ~ ., data = iris), newdata = as.data.frame(newx))) +> p2 <- unlist(treeresponse(ctreefit(ls, control = ctree_control()), newdata = as.matrix(newx))) +> stopifnot(identical(max(abs(p1 - p2)), 0)) +> +> set.seed(29) +> p1 <- unlist(treeresponse(cforestfit(ls, control = cforest_unbiased(mtry = 1)), newdata = as.matrix(newx))) +> set.seed(29) +> p2 <- unlist(treeresponse(cforest(Species ~ ., data = iris, control = cforest_unbiased(mtry = 1)), ++ newdata = as.data.frame(newx))) +> stopifnot(identical(max(abs(p1 - p2)), 0)) +> +> proc.time() + user system elapsed + 2.492 0.112 2.604