|
a |
|
b/partyMod/tests/RandomForest-regtest.Rout.save |
|
|
1 |
|
|
|
2 |
R Under development (unstable) (2014-06-29 r66051) -- "Unsuffered Consequences" |
|
|
3 |
Copyright (C) 2014 The R Foundation for Statistical Computing |
|
|
4 |
Platform: x86_64-unknown-linux-gnu (64-bit) |
|
|
5 |
|
|
|
6 |
R is free software and comes with ABSOLUTELY NO WARRANTY. |
|
|
7 |
You are welcome to redistribute it under certain conditions. |
|
|
8 |
Type 'license()' or 'licence()' for distribution details. |
|
|
9 |
|
|
|
10 |
R is a collaborative project with many contributors. |
|
|
11 |
Type 'contributors()' for more information and |
|
|
12 |
'citation()' on how to cite R or R packages in publications. |
|
|
13 |
|
|
|
14 |
Type 'demo()' for some demos, 'help()' for on-line help, or |
|
|
15 |
'help.start()' for an HTML browser interface to help. |
|
|
16 |
Type 'q()' to quit R. |
|
|
17 |
|
|
|
18 |
> |
|
|
19 |
> set.seed(290875) |
|
|
20 |
> library("party") |
|
|
21 |
Loading required package: grid |
|
|
22 |
Loading required package: zoo |
|
|
23 |
|
|
|
24 |
Attaching package: 'zoo' |
|
|
25 |
|
|
|
26 |
The following objects are masked from 'package:base': |
|
|
27 |
|
|
|
28 |
as.Date, as.Date.numeric |
|
|
29 |
|
|
|
30 |
Loading required package: sandwich |
|
|
31 |
Loading required package: strucchange |
|
|
32 |
Loading required package: modeltools |
|
|
33 |
Loading required package: stats4 |
|
|
34 |
> if (!require("TH.data")) |
|
|
35 |
+ stop("cannot load package TH.data") |
|
|
36 |
Loading required package: TH.data |
|
|
37 |
> if (!require("coin")) |
|
|
38 |
+ stop("cannot load package coin") |
|
|
39 |
Loading required package: coin |
|
|
40 |
Loading required package: survival |
|
|
41 |
Loading required package: splines |
|
|
42 |
> |
|
|
43 |
> data("GlaucomaM", package = "TH.data") |
|
|
44 |
> rf <- cforest(Class ~ ., data = GlaucomaM, control = cforest_unbiased(ntree = 30)) |
|
|
45 |
> stopifnot(mean(GlaucomaM$Class != predict(rf)) < |
|
|
46 |
+ mean(GlaucomaM$Class != predict(rf, OOB = TRUE))) |
|
|
47 |
> |
|
|
48 |
> data("GBSG2", package = "TH.data") |
|
|
49 |
> rfS <- cforest(Surv(time, cens) ~ ., data = GBSG2, control = cforest_unbiased(ntree = 30)) |
|
|
50 |
> treeresponse(rfS, newdata = GBSG2[1:2,]) |
|
|
51 |
$`1` |
|
|
52 |
Call: survfit(formula = y ~ 1, weights = weights) |
|
|
53 |
|
|
|
54 |
records n.max n.start events median 0.95LCL 0.95UCL |
|
|
55 |
143 394 394 237 1528 1306 1675 |
|
|
56 |
|
|
|
57 |
$`2` |
|
|
58 |
Call: survfit(formula = y ~ 1, weights = weights) |
|
|
59 |
|
|
|
60 |
records n.max n.start events median 0.95LCL 0.95UCL |
|
|
61 |
145 380 380 160 2015 1807 2018 |
|
|
62 |
|
|
|
63 |
> |
|
|
64 |
> ### give it a try, at least |
|
|
65 |
> varimp(rf, pre1.0_0 = TRUE) |
|
|
66 |
ag at as an ai |
|
|
67 |
0.0000000000 0.0004629630 0.0027777778 0.0013888889 0.0032407407 |
|
|
68 |
eag eat eas ean eai |
|
|
69 |
0.0000000000 0.0000000000 0.0000000000 0.0027777778 -0.0004629630 |
|
|
70 |
abrg abrt abrs abrn abri |
|
|
71 |
0.0000000000 0.0023148148 0.0013888889 0.0018518519 0.0046296296 |
|
|
72 |
hic mhcg mhct mhcs mhcn |
|
|
73 |
0.0069444444 0.0000000000 0.0009259259 0.0000000000 0.0009259259 |
|
|
74 |
mhci phcg phct phcs phcn |
|
|
75 |
0.0078703704 0.0097222222 0.0000000000 0.0000000000 -0.0004629630 |
|
|
76 |
phci hvc vbsg vbst vbss |
|
|
77 |
0.0171296296 0.0018518519 0.0013888889 -0.0004629630 0.0018518519 |
|
|
78 |
vbsn vbsi vasg vast vass |
|
|
79 |
0.0000000000 0.0000000000 -0.0023148148 0.0000000000 0.0000000000 |
|
|
80 |
vasn vasi vbrg vbrt vbrs |
|
|
81 |
0.0000000000 0.0018518519 0.0000000000 0.0013888889 -0.0004629630 |
|
|
82 |
vbrn vbri varg vart vars |
|
|
83 |
0.0032407407 0.0004629630 0.0351851852 0.0000000000 0.0254629630 |
|
|
84 |
varn vari mdg mdt mds |
|
|
85 |
0.0138888889 0.0425925926 0.0000000000 0.0000000000 -0.0023148148 |
|
|
86 |
mdn mdi tmg tmt tms |
|
|
87 |
0.0032407407 0.0004629630 0.0222222222 0.0009259259 0.0069444444 |
|
|
88 |
tmn tmi mr rnf mdic |
|
|
89 |
-0.0027777778 0.0273148148 0.0000000000 0.0055555556 0.0074074074 |
|
|
90 |
emd mv |
|
|
91 |
0.0000000000 -0.0013888889 |
|
|
92 |
> |
|
|
93 |
> P <- proximity(rf) |
|
|
94 |
> stopifnot(max(abs(P - t(P))) == 0) |
|
|
95 |
> |
|
|
96 |
> P[1:10,1:10] |
|
|
97 |
2 43 25 65 70 16 6 |
|
|
98 |
2 1.00000000 0.15384615 0.7500000 0.0000000 0.07142857 0.13333333 0.7142857 |
|
|
99 |
43 0.15384615 1.00000000 0.1818182 0.0000000 0.11111111 0.45454545 0.1111111 |
|
|
100 |
25 0.75000000 0.18181818 1.0000000 0.1818182 0.11111111 0.14285714 0.8000000 |
|
|
101 |
65 0.00000000 0.00000000 0.1818182 1.0000000 0.00000000 0.00000000 0.1666667 |
|
|
102 |
70 0.07142857 0.11111111 0.1111111 0.0000000 1.00000000 0.00000000 0.1428571 |
|
|
103 |
16 0.13333333 0.45454545 0.1428571 0.0000000 0.00000000 1.00000000 0.0000000 |
|
|
104 |
6 0.71428571 0.11111111 0.8000000 0.1666667 0.14285714 0.00000000 1.0000000 |
|
|
105 |
5 0.58823529 0.09090909 0.7692308 0.5000000 0.09090909 0.08333333 0.5000000 |
|
|
106 |
12 0.44444444 0.00000000 0.5714286 0.5833333 0.07692308 0.06666667 0.3333333 |
|
|
107 |
63 0.46153846 0.10000000 0.5000000 0.2222222 0.00000000 0.18181818 0.5000000 |
|
|
108 |
5 12 63 |
|
|
109 |
2 0.58823529 0.44444444 0.4615385 |
|
|
110 |
43 0.09090909 0.00000000 0.1000000 |
|
|
111 |
25 0.76923077 0.57142857 0.5000000 |
|
|
112 |
65 0.50000000 0.58333333 0.2222222 |
|
|
113 |
70 0.09090909 0.07692308 0.0000000 |
|
|
114 |
16 0.08333333 0.06666667 0.1818182 |
|
|
115 |
6 0.50000000 0.33333333 0.5000000 |
|
|
116 |
5 1.00000000 0.76923077 0.5454545 |
|
|
117 |
12 0.76923077 1.00000000 0.5714286 |
|
|
118 |
63 0.54545455 0.57142857 1.0000000 |
|
|
119 |
> |
|
|
120 |
> ### variable importances |
|
|
121 |
> a <- cforest(Species ~ ., data = iris, |
|
|
122 |
+ control = cforest_unbiased(mtry = 2, ntree = 10)) |
|
|
123 |
> varimp(a, pre1.0_0 = TRUE) |
|
|
124 |
Sepal.Length Sepal.Width Petal.Length Petal.Width |
|
|
125 |
0.036363636 0.007272727 0.312727273 0.276363636 |
|
|
126 |
> varimp(a, conditional = TRUE) |
|
|
127 |
Sepal.Length Sepal.Width Petal.Length Petal.Width |
|
|
128 |
0.003636364 -0.003636364 0.167272727 0.194545455 |
|
|
129 |
> |
|
|
130 |
> airq <- subset(airquality, complete.cases(airquality)) |
|
|
131 |
> a <- cforest(Ozone ~ ., data = airq, |
|
|
132 |
+ control = cforest_unbiased(mtry = 2, ntree = 10)) |
|
|
133 |
> varimp(a, pre1.0_0 = TRUE) |
|
|
134 |
Solar.R Wind Temp Month Day |
|
|
135 |
139.397699 501.974401 500.220403 28.532700 3.806919 |
|
|
136 |
> varimp(a, conditional = TRUE) |
|
|
137 |
Solar.R Wind Temp Month Day |
|
|
138 |
93.220640 334.737163 212.686904 14.329278 2.061793 |
|
|
139 |
> |
|
|
140 |
> data("mammoexp", package = "TH.data") |
|
|
141 |
> a <- cforest(ME ~ ., data = mammoexp, control = cforest_classical(ntree = 10)) |
|
|
142 |
> varimp(a, pre1.0_0 = TRUE) |
|
|
143 |
SYMPT PB HIST BSE DECT |
|
|
144 |
0.027998627 0.021174836 0.018630793 0.002646901 0.005578231 |
|
|
145 |
> varimp(a, conditional = TRUE) |
|
|
146 |
SYMPT PB HIST BSE DECT |
|
|
147 |
0.021408831 0.012420497 0.013407572 0.001282682 0.002857143 |
|
|
148 |
> |
|
|
149 |
> stopifnot(all.equal(unique(sapply(a@weights, sum)), nrow(mammoexp))) |
|
|
150 |
> |
|
|
151 |
> ### check user-defined weights |
|
|
152 |
> nobs <- nrow(GlaucomaM) |
|
|
153 |
> i <- rep(0.0, nobs) |
|
|
154 |
> i[1:floor(.632 * nobs)] <- 1 |
|
|
155 |
> folds <- replicate(100, sample(i)) |
|
|
156 |
> rf2 <- cforest(Class ~ ., data = GlaucomaM, control = cforest_unbiased(ntree = 100), weights = folds) |
|
|
157 |
> table(predict(rf), predict(rf2)) |
|
|
158 |
|
|
|
159 |
glaucoma normal |
|
|
160 |
glaucoma 89 4 |
|
|
161 |
normal 2 101 |
|
|
162 |
> |
|
|
163 |
> proc.time() |
|
|
164 |
user system elapsed |
|
|
165 |
3.132 0.052 3.185 |