|
a |
|
b/partyMod/tests/LinearStatistic-regtest.Rout.save |
|
|
1 |
|
|
|
2 |
R Under development (unstable) (2014-06-29 r66051) -- "Unsuffered Consequences" |
|
|
3 |
Copyright (C) 2014 The R Foundation for Statistical Computing |
|
|
4 |
Platform: x86_64-unknown-linux-gnu (64-bit) |
|
|
5 |
|
|
|
6 |
R is free software and comes with ABSOLUTELY NO WARRANTY. |
|
|
7 |
You are welcome to redistribute it under certain conditions. |
|
|
8 |
Type 'license()' or 'licence()' for distribution details. |
|
|
9 |
|
|
|
10 |
R is a collaborative project with many contributors. |
|
|
11 |
Type 'contributors()' for more information and |
|
|
12 |
'citation()' on how to cite R or R packages in publications. |
|
|
13 |
|
|
|
14 |
Type 'demo()' for some demos, 'help()' for on-line help, or |
|
|
15 |
'help.start()' for an HTML browser interface to help. |
|
|
16 |
Type 'q()' to quit R. |
|
|
17 |
|
|
|
18 |
> |
|
|
19 |
> set.seed(290875) |
|
|
20 |
> library("party") |
|
|
21 |
Loading required package: grid |
|
|
22 |
Loading required package: zoo |
|
|
23 |
|
|
|
24 |
Attaching package: 'zoo' |
|
|
25 |
|
|
|
26 |
The following objects are masked from 'package:base': |
|
|
27 |
|
|
|
28 |
as.Date, as.Date.numeric |
|
|
29 |
|
|
|
30 |
Loading required package: sandwich |
|
|
31 |
Loading required package: strucchange |
|
|
32 |
Loading required package: modeltools |
|
|
33 |
Loading required package: stats4 |
|
|
34 |
> |
|
|
35 |
> ### get rid of the NAMESPACE |
|
|
36 |
> attach(asNamespace("party")) |
|
|
37 |
The following objects are masked from package:party: |
|
|
38 |
|
|
|
39 |
cforest, cforest_classical, cforest_control, cforest_unbiased, |
|
|
40 |
conditionalTree, ctree, ctree_control, ctree_memory, edge_simple, |
|
|
41 |
mob, mob_control, node_barplot, node_bivplot, node_boxplot, |
|
|
42 |
node_density, node_hist, node_inner, node_scatterplot, node_surv, |
|
|
43 |
node_terminal, proximity, ptrafo, reweight, sctest.mob, varimp, |
|
|
44 |
varimpAUC |
|
|
45 |
|
|
|
46 |
> |
|
|
47 |
> ### |
|
|
48 |
> ### |
|
|
49 |
> ### Regression tests for linear statistics, expectations and covariances |
|
|
50 |
> ### |
|
|
51 |
> ### functions defined in file `./src/LinearStatistics.c' |
|
|
52 |
> |
|
|
53 |
> ### tests for function C_LinearStatistic |
|
|
54 |
> ### Linear Statistics |
|
|
55 |
> x = matrix(c(rep.int(1,4), rep.int(0,6)), ncol = 1) |
|
|
56 |
> y = matrix(1:10, ncol = 1) |
|
|
57 |
> weights = rep(1, 10) |
|
|
58 |
> linstat = LinearStatistic(x, y, weights) |
|
|
59 |
> stopifnot(isequal(linstat, sum(1:4))) |
|
|
60 |
> |
|
|
61 |
> weights[1] = 0 |
|
|
62 |
> linstat = LinearStatistic(x, y, weights) |
|
|
63 |
> stopifnot(isequal(linstat, sum(2:4))) |
|
|
64 |
> |
|
|
65 |
> xf <- gl(3, 10) |
|
|
66 |
> yf <- gl(3, 10)[sample(1:30)] |
|
|
67 |
> x <- sapply(levels(xf), function(l) as.numeric(xf == l)) |
|
|
68 |
> colnames(x) <- NULL |
|
|
69 |
> y <- sapply(levels(yf), function(l) as.numeric(yf == l)) |
|
|
70 |
> colnames(y) <- NULL |
|
|
71 |
> weights <- sample(1:30) |
|
|
72 |
> linstat <- LinearStatistic(x, y, weights) |
|
|
73 |
> stopifnot(isequal(linstat, as.vector(t(x) %*% diag(weights) %*% y))) |
|
|
74 |
> |
|
|
75 |
> xf <- factor(cut(rnorm(6000), breaks = c(-Inf, -2, 0.5, Inf))) |
|
|
76 |
> x <- sapply(levels(xf), function(l) as.numeric(xf == l)) |
|
|
77 |
> yf <- factor(cut(rnorm(6000), breaks = c(-Inf, -0.5, 1.5, Inf))) |
|
|
78 |
> y <- sapply(levels(yf), function(l) as.numeric(yf == l)) |
|
|
79 |
> weights <- rep(1, nrow(x)) |
|
|
80 |
> colnames(x) <- NULL |
|
|
81 |
> colnames(y) <- NULL |
|
|
82 |
> weights <- rep(1, 6000) |
|
|
83 |
> linstat <- LinearStatistic(x, y, weights) |
|
|
84 |
> stopifnot(isequal(as.vector(table(xf, yf)), linstat)) |
|
|
85 |
> stopifnot(isequal(as.vector(t(x)%*%y), linstat)) |
|
|
86 |
> |
|
|
87 |
> |
|
|
88 |
> ### tests for function C_ExpectCovarInfluence |
|
|
89 |
> eci <- ExpectCovarInfluence(y, weights) |
|
|
90 |
> isequal(eci@sumweights, sum(weights)) |
|
|
91 |
[1] TRUE |
|
|
92 |
> isequal(eci@expectation, drop(weights %*% y / sum(weights))) |
|
|
93 |
[1] TRUE |
|
|
94 |
> ys <- t(t(y) - eci@expectation) |
|
|
95 |
> stopifnot(isequal(eci@covariance, (t(ys) %*% (weights * ys)) / |
|
|
96 |
+ sum(weights))) |
|
|
97 |
> |
|
|
98 |
> ### tests for function C_ExpectCovarLinearStatistic |
|
|
99 |
> ### Conditional Expectation and Variance (via Kruskal-Wallis statistic) |
|
|
100 |
> |
|
|
101 |
> ### case 1: p > 1, q = 1 |
|
|
102 |
> group <- gl(3, 5) |
|
|
103 |
> x <- sapply(levels(group), function(l) as.numeric(group == l)) |
|
|
104 |
> y <- matrix(1:15, ncol = 1) |
|
|
105 |
> weights <- rep(1, 15) |
|
|
106 |
> |
|
|
107 |
> linstat <- LinearStatistic(x, y, weights) |
|
|
108 |
> expcov <- ExpectCovarLinearStatistic(x, y, weights) |
|
|
109 |
> KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) |
|
|
110 |
> kts <- kruskal.test(y ~ group)$statistic |
|
|
111 |
> stopifnot(isequal(KW, kts)) |
|
|
112 |
> |
|
|
113 |
> ### case 2: p = 1, q > 1 |
|
|
114 |
> linstat <- LinearStatistic(y, x, weights) |
|
|
115 |
> expcov <- ExpectCovarLinearStatistic(y, x, weights) |
|
|
116 |
> KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) |
|
|
117 |
> kts <- kruskal.test(y ~ group)$statistic |
|
|
118 |
> stopifnot(isequal(KW, kts)) |
|
|
119 |
> |
|
|
120 |
> ### case 3: p = 1, q = 1 |
|
|
121 |
> x <- x[,1,drop = FALSE] |
|
|
122 |
> linstat <- LinearStatistic(x, y, weights) |
|
|
123 |
> expcov <- ExpectCovarLinearStatistic(x, y, weights) |
|
|
124 |
> KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) |
|
|
125 |
> kts <- kruskal.test(y ~ as.factor(x))$statistic |
|
|
126 |
> stopifnot(isequal(KW, kts)) |
|
|
127 |
> |
|
|
128 |
> ### case 4: p > 1, q > 1 via chisq.test |
|
|
129 |
> n <- 900 |
|
|
130 |
> xf <- gl(3, n / 3) |
|
|
131 |
> yf <- gl(3, n / 3)[sample(1:n)] |
|
|
132 |
> x <- sapply(levels(xf), function(l) as.numeric(xf == l)) |
|
|
133 |
> colnames(x) <- NULL |
|
|
134 |
> y <- sapply(levels(yf), function(l) as.numeric(yf == l)) |
|
|
135 |
> colnames(y) <- NULL |
|
|
136 |
> weights <- rep(1, n) |
|
|
137 |
> linstat <- LinearStatistic(x, y, weights) |
|
|
138 |
> expcov <- ExpectCovarLinearStatistic(x, y, weights) |
|
|
139 |
> chi <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) |
|
|
140 |
> chis <- chisq.test(table(xf, yf))$statistic |
|
|
141 |
> stopifnot(isequal(round(chi, 1), round(chis, 1))) |
|
|
142 |
> |
|
|
143 |
> ### tests for function C_PermutedLinearStatistic |
|
|
144 |
> ### Linear Statistics with permuted indices |
|
|
145 |
> x <- matrix(rnorm(100), ncol = 2) |
|
|
146 |
> y <- matrix(rnorm(100), ncol = 2) |
|
|
147 |
> weights <- rep(1, 50) |
|
|
148 |
> indx <- 1:50 |
|
|
149 |
> perm <- 1:50 |
|
|
150 |
> stopifnot(isequal(LinearStatistic(x, y, weights), |
|
|
151 |
+ PermutedLinearStatistic(x, y, indx, perm))) |
|
|
152 |
> x <- matrix(1:10000, ncol = 2) |
|
|
153 |
> y <- matrix(1:10000, ncol = 2) |
|
|
154 |
> |
|
|
155 |
> for (i in 1:100) { |
|
|
156 |
+ indx <- sample(1:ncol(y), replace = TRUE) |
|
|
157 |
+ perm <- sample(1:ncol(y), replace = TRUE) |
|
|
158 |
+ |
|
|
159 |
+ stopifnot(isequal(as.vector(t(x[indx,]) %*% y[perm, ]), |
|
|
160 |
+ PermutedLinearStatistic(x, y, indx, perm))) |
|
|
161 |
+ } |
|
|
162 |
> |
|
|
163 |
> proc.time() |
|
|
164 |
user system elapsed |
|
|
165 |
0.776 0.020 0.793 |