|
a |
|
b/partyMod/tests/LinearStatistic-regtest.R |
|
|
1 |
|
|
|
2 |
set.seed(290875) |
|
|
3 |
library("party") |
|
|
4 |
|
|
|
5 |
### get rid of the NAMESPACE |
|
|
6 |
attach(asNamespace("party")) |
|
|
7 |
|
|
|
8 |
### |
|
|
9 |
### |
|
|
10 |
### Regression tests for linear statistics, expectations and covariances |
|
|
11 |
### |
|
|
12 |
### functions defined in file `./src/LinearStatistics.c' |
|
|
13 |
|
|
|
14 |
### tests for function C_LinearStatistic |
|
|
15 |
### Linear Statistics |
|
|
16 |
x = matrix(c(rep.int(1,4), rep.int(0,6)), ncol = 1) |
|
|
17 |
y = matrix(1:10, ncol = 1) |
|
|
18 |
weights = rep(1, 10) |
|
|
19 |
linstat = LinearStatistic(x, y, weights) |
|
|
20 |
stopifnot(isequal(linstat, sum(1:4))) |
|
|
21 |
|
|
|
22 |
weights[1] = 0 |
|
|
23 |
linstat = LinearStatistic(x, y, weights) |
|
|
24 |
stopifnot(isequal(linstat, sum(2:4))) |
|
|
25 |
|
|
|
26 |
xf <- gl(3, 10) |
|
|
27 |
yf <- gl(3, 10)[sample(1:30)] |
|
|
28 |
x <- sapply(levels(xf), function(l) as.numeric(xf == l)) |
|
|
29 |
colnames(x) <- NULL |
|
|
30 |
y <- sapply(levels(yf), function(l) as.numeric(yf == l)) |
|
|
31 |
colnames(y) <- NULL |
|
|
32 |
weights <- sample(1:30) |
|
|
33 |
linstat <- LinearStatistic(x, y, weights) |
|
|
34 |
stopifnot(isequal(linstat, as.vector(t(x) %*% diag(weights) %*% y))) |
|
|
35 |
|
|
|
36 |
xf <- factor(cut(rnorm(6000), breaks = c(-Inf, -2, 0.5, Inf))) |
|
|
37 |
x <- sapply(levels(xf), function(l) as.numeric(xf == l)) |
|
|
38 |
yf <- factor(cut(rnorm(6000), breaks = c(-Inf, -0.5, 1.5, Inf))) |
|
|
39 |
y <- sapply(levels(yf), function(l) as.numeric(yf == l)) |
|
|
40 |
weights <- rep(1, nrow(x)) |
|
|
41 |
colnames(x) <- NULL |
|
|
42 |
colnames(y) <- NULL |
|
|
43 |
weights <- rep(1, 6000) |
|
|
44 |
linstat <- LinearStatistic(x, y, weights) |
|
|
45 |
stopifnot(isequal(as.vector(table(xf, yf)), linstat)) |
|
|
46 |
stopifnot(isequal(as.vector(t(x)%*%y), linstat)) |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
### tests for function C_ExpectCovarInfluence |
|
|
50 |
eci <- ExpectCovarInfluence(y, weights) |
|
|
51 |
isequal(eci@sumweights, sum(weights)) |
|
|
52 |
isequal(eci@expectation, drop(weights %*% y / sum(weights))) |
|
|
53 |
ys <- t(t(y) - eci@expectation) |
|
|
54 |
stopifnot(isequal(eci@covariance, (t(ys) %*% (weights * ys)) / |
|
|
55 |
sum(weights))) |
|
|
56 |
|
|
|
57 |
### tests for function C_ExpectCovarLinearStatistic |
|
|
58 |
### Conditional Expectation and Variance (via Kruskal-Wallis statistic) |
|
|
59 |
|
|
|
60 |
### case 1: p > 1, q = 1 |
|
|
61 |
group <- gl(3, 5) |
|
|
62 |
x <- sapply(levels(group), function(l) as.numeric(group == l)) |
|
|
63 |
y <- matrix(1:15, ncol = 1) |
|
|
64 |
weights <- rep(1, 15) |
|
|
65 |
|
|
|
66 |
linstat <- LinearStatistic(x, y, weights) |
|
|
67 |
expcov <- ExpectCovarLinearStatistic(x, y, weights) |
|
|
68 |
KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) |
|
|
69 |
kts <- kruskal.test(y ~ group)$statistic |
|
|
70 |
stopifnot(isequal(KW, kts)) |
|
|
71 |
|
|
|
72 |
### case 2: p = 1, q > 1 |
|
|
73 |
linstat <- LinearStatistic(y, x, weights) |
|
|
74 |
expcov <- ExpectCovarLinearStatistic(y, x, weights) |
|
|
75 |
KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) |
|
|
76 |
kts <- kruskal.test(y ~ group)$statistic |
|
|
77 |
stopifnot(isequal(KW, kts)) |
|
|
78 |
|
|
|
79 |
### case 3: p = 1, q = 1 |
|
|
80 |
x <- x[,1,drop = FALSE] |
|
|
81 |
linstat <- LinearStatistic(x, y, weights) |
|
|
82 |
expcov <- ExpectCovarLinearStatistic(x, y, weights) |
|
|
83 |
KW <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) |
|
|
84 |
kts <- kruskal.test(y ~ as.factor(x))$statistic |
|
|
85 |
stopifnot(isequal(KW, kts)) |
|
|
86 |
|
|
|
87 |
### case 4: p > 1, q > 1 via chisq.test |
|
|
88 |
n <- 900 |
|
|
89 |
xf <- gl(3, n / 3) |
|
|
90 |
yf <- gl(3, n / 3)[sample(1:n)] |
|
|
91 |
x <- sapply(levels(xf), function(l) as.numeric(xf == l)) |
|
|
92 |
colnames(x) <- NULL |
|
|
93 |
y <- sapply(levels(yf), function(l) as.numeric(yf == l)) |
|
|
94 |
colnames(y) <- NULL |
|
|
95 |
weights <- rep(1, n) |
|
|
96 |
linstat <- LinearStatistic(x, y, weights) |
|
|
97 |
expcov <- ExpectCovarLinearStatistic(x, y, weights) |
|
|
98 |
chi <- quadformTestStatistic(linstat, expcov@expectation, expcov@covariance) |
|
|
99 |
chis <- chisq.test(table(xf, yf))$statistic |
|
|
100 |
stopifnot(isequal(round(chi, 1), round(chis, 1))) |
|
|
101 |
|
|
|
102 |
### tests for function C_PermutedLinearStatistic |
|
|
103 |
### Linear Statistics with permuted indices |
|
|
104 |
x <- matrix(rnorm(100), ncol = 2) |
|
|
105 |
y <- matrix(rnorm(100), ncol = 2) |
|
|
106 |
weights <- rep(1, 50) |
|
|
107 |
indx <- 1:50 |
|
|
108 |
perm <- 1:50 |
|
|
109 |
stopifnot(isequal(LinearStatistic(x, y, weights), |
|
|
110 |
PermutedLinearStatistic(x, y, indx, perm))) |
|
|
111 |
x <- matrix(1:10000, ncol = 2) |
|
|
112 |
y <- matrix(1:10000, ncol = 2) |
|
|
113 |
|
|
|
114 |
for (i in 1:100) { |
|
|
115 |
indx <- sample(1:ncol(y), replace = TRUE) |
|
|
116 |
perm <- sample(1:ncol(y), replace = TRUE) |
|
|
117 |
|
|
|
118 |
stopifnot(isequal(as.vector(t(x[indx,]) %*% y[perm, ]), |
|
|
119 |
PermutedLinearStatistic(x, y, indx, perm))) |
|
|
120 |
} |