|
a |
|
b/partyMod/tests/Distributions.Rout.save |
|
|
1 |
|
|
|
2 |
R Under development (unstable) (2014-06-29 r66051) -- "Unsuffered Consequences" |
|
|
3 |
Copyright (C) 2014 The R Foundation for Statistical Computing |
|
|
4 |
Platform: x86_64-unknown-linux-gnu (64-bit) |
|
|
5 |
|
|
|
6 |
R is free software and comes with ABSOLUTELY NO WARRANTY. |
|
|
7 |
You are welcome to redistribute it under certain conditions. |
|
|
8 |
Type 'license()' or 'licence()' for distribution details. |
|
|
9 |
|
|
|
10 |
R is a collaborative project with many contributors. |
|
|
11 |
Type 'contributors()' for more information and |
|
|
12 |
'citation()' on how to cite R or R packages in publications. |
|
|
13 |
|
|
|
14 |
Type 'demo()' for some demos, 'help()' for on-line help, or |
|
|
15 |
'help.start()' for an HTML browser interface to help. |
|
|
16 |
Type 'q()' to quit R. |
|
|
17 |
|
|
|
18 |
> |
|
|
19 |
> set.seed(290875) |
|
|
20 |
> library("party") |
|
|
21 |
Loading required package: grid |
|
|
22 |
Loading required package: zoo |
|
|
23 |
|
|
|
24 |
Attaching package: 'zoo' |
|
|
25 |
|
|
|
26 |
The following objects are masked from 'package:base': |
|
|
27 |
|
|
|
28 |
as.Date, as.Date.numeric |
|
|
29 |
|
|
|
30 |
Loading required package: sandwich |
|
|
31 |
Loading required package: strucchange |
|
|
32 |
Loading required package: modeltools |
|
|
33 |
Loading required package: stats4 |
|
|
34 |
> if (!require("mvtnorm")) |
|
|
35 |
+ stop("cannot load package mvtnorm") |
|
|
36 |
Loading required package: mvtnorm |
|
|
37 |
> |
|
|
38 |
> |
|
|
39 |
> ### get rid of the NAMESPACE |
|
|
40 |
> attach(asNamespace("party")) |
|
|
41 |
The following objects are masked from package:party: |
|
|
42 |
|
|
|
43 |
cforest, cforest_classical, cforest_control, cforest_unbiased, |
|
|
44 |
conditionalTree, ctree, ctree_control, ctree_memory, edge_simple, |
|
|
45 |
mob, mob_control, node_barplot, node_bivplot, node_boxplot, |
|
|
46 |
node_density, node_hist, node_inner, node_scatterplot, node_surv, |
|
|
47 |
node_terminal, proximity, ptrafo, reweight, sctest.mob, varimp, |
|
|
48 |
varimpAUC |
|
|
49 |
|
|
|
50 |
> |
|
|
51 |
> ### |
|
|
52 |
> ### |
|
|
53 |
> ### Regression tests for conditional distributions |
|
|
54 |
> ### |
|
|
55 |
> ### functions defined in file `./src/Distributions.c' |
|
|
56 |
> |
|
|
57 |
> ### chisq-distribution of quadratic forms |
|
|
58 |
> t <- 2.1 |
|
|
59 |
> df <- 2 |
|
|
60 |
> storage.mode(t) <- "double" |
|
|
61 |
> storage.mode(df) <- "double" |
|
|
62 |
> stopifnot(isequal(1 - pchisq(t, df = df), ### P-values!!! |
|
|
63 |
+ .Call("R_quadformConditionalPvalue", t, df, PACKAGE = "party"))) |
|
|
64 |
> |
|
|
65 |
> stopifnot(isequal(2*pnorm(-t), |
|
|
66 |
+ .Call("R_maxabsConditionalPvalue", t, matrix(1), as.integer(1), 0.0, 0.0, 0.0, PACKAGE = "party"))) |
|
|
67 |
> |
|
|
68 |
> |
|
|
69 |
> maxpts <- 25000 |
|
|
70 |
> storage.mode(maxpts) <- "integer" |
|
|
71 |
> abseps <- 0.0001 |
|
|
72 |
> releps <- 0 |
|
|
73 |
> tol <- 1e-10 |
|
|
74 |
> |
|
|
75 |
> a <- 1.96 |
|
|
76 |
> b <- diag(2) |
|
|
77 |
> |
|
|
78 |
> p1 <- .Call("R_maxabsConditionalPvalue", a, b, maxpts, abseps, releps, tol, PACKAGE = "party") |
|
|
79 |
> p2 <- pmvnorm(lower = rep(-a,2), upper = rep(a,2), corr = b) |
|
|
80 |
> stopifnot(isequal(round(p1, 3), round(1 - p2, 3))) |
|
|
81 |
> |
|
|
82 |
> b <- diag(4) |
|
|
83 |
> p1 <- .Call("R_maxabsConditionalPvalue", a, b, maxpts, abseps, releps, tol, PACKAGE = "party") |
|
|
84 |
> p2 <- pmvnorm(lower = rep(-a,4), upper = rep(a,4), corr = b) |
|
|
85 |
> stopifnot(isequal(round(p1, 3), round(1 - p2, 3))) |
|
|
86 |
> |
|
|
87 |
> b <- diag(4) |
|
|
88 |
> b[upper.tri(b)] <- c(0.1, 0.2, 0.3) |
|
|
89 |
> b[lower.tri(b)] <- t(b)[lower.tri(b)] |
|
|
90 |
> p1 <- .Call("R_maxabsConditionalPvalue", a, b, maxpts, abseps, releps, tol, PACKAGE = "party") |
|
|
91 |
> p2 <- pmvnorm(lower = rep(-a,4), upper = rep(a,4), corr = b) |
|
|
92 |
> stopifnot(isequal(round(p1, 3), round(1 - p2, 3))) |
|
|
93 |
> |
|
|
94 |
> ### Monte-Carlo approximation of P-Values, univariate |
|
|
95 |
> mydata = data.frame(y = gl(2, 50), x1 = rnorm(100), |
|
|
96 |
+ x2 = rnorm(100), x3 = rnorm(100)) |
|
|
97 |
> inp <- initVariableFrame(mydata[,"x1",drop = FALSE], trafo = function(data) |
|
|
98 |
+ ptrafo(data, numeric_trafo = rank)) |
|
|
99 |
> resp <- initVariableFrame(mydata[,"y",drop = FALSE], trafo = NULL, response = TRUE) |
|
|
100 |
> ls <- new("LearningSample", inputs = inp, responses = resp, |
|
|
101 |
+ weights = rep(1, inp@nobs), nobs = nrow(mydata), |
|
|
102 |
+ ninputs = inp@ninputs) |
|
|
103 |
> tm <- ctree_memory(ls) |
|
|
104 |
> varctrl <- new("VariableControl") |
|
|
105 |
> varctrl@teststat <- factor("max", levels = c("max", "quad")) |
|
|
106 |
> varctrl@pvalue <- FALSE |
|
|
107 |
> gtctrl <- new("GlobalTestControl") |
|
|
108 |
> gtctrl@testtype <- factor("MonteCarlo", levels = levels(gtctrl@testtype)) |
|
|
109 |
> gtctrl@nresample <- as.integer(19999) |
|
|
110 |
> |
|
|
111 |
> pvals <- .Call("R_GlobalTest", ls, ls@weights, tm, varctrl, gtctrl, PACKAGE = "party") |
|
|
112 |
> wstat <- abs(qnorm(wilcox.test(x1 ~ y, data = mydata, |
|
|
113 |
+ exact = FALSE, correct = FALSE)$p.value/2)) |
|
|
114 |
> wpval <- wilcox.test(x1 ~ y, data = mydata, exact = TRUE)$p.value |
|
|
115 |
> stopifnot(isequal(wstat, pvals[[1]])) |
|
|
116 |
> stopifnot(abs(wpval - (1 - pvals[[2]])) < 0.01) |
|
|
117 |
> |
|
|
118 |
> ### Monte-Carlo approximations of P-Values, multiple inputs |
|
|
119 |
> mydata = data.frame(y = gl(2, 50), x1 = rnorm(100), |
|
|
120 |
+ x2 = rnorm(100), x3 = rnorm(100)) |
|
|
121 |
> inp <- initVariableFrame(mydata[,c("x1", "x2", "x3"), |
|
|
122 |
+ drop = FALSE], trafo = function(data) |
|
|
123 |
+ ptrafo(data, numeric_trafo = rank)) |
|
|
124 |
> resp <- initVariableFrame(mydata[,"y",drop = FALSE], trafo = NULL, response = TRUE) |
|
|
125 |
> ls <- new("LearningSample", inputs = inp, responses = resp, |
|
|
126 |
+ weights = rep(1, inp@nobs), nobs = nrow(mydata), |
|
|
127 |
+ ninputs = inp@ninputs) |
|
|
128 |
> tm <- ctree_memory(ls) |
|
|
129 |
> varctrl <- new("VariableControl") |
|
|
130 |
> varctrl@teststat <- factor("max", levels = c("max", "quad")) |
|
|
131 |
> varctrl@pvalue <- TRUE |
|
|
132 |
> gtctrl <- new("GlobalTestControl") |
|
|
133 |
> gtctrl@testtype <- factor("Univariate", levels = levels(gtctrl@testtype)) |
|
|
134 |
> gtctrl@nresample <- as.integer(19999) |
|
|
135 |
> |
|
|
136 |
> pvals <- .Call("R_GlobalTest", ls, ls@weights, tm, varctrl, gtctrl, PACKAGE = "party") |
|
|
137 |
> wstat <- c(abs(qnorm(wilcox.test(x1 ~ y, data = mydata, |
|
|
138 |
+ exact = FALSE, correct = FALSE)$p.value/2)), |
|
|
139 |
+ abs(qnorm(wilcox.test(x2 ~ y, data = mydata, |
|
|
140 |
+ exact = FALSE, correct = FALSE)$p.value/2)), |
|
|
141 |
+ abs(qnorm(wilcox.test(x3 ~ y, data = mydata, |
|
|
142 |
+ exact = FALSE, correct = FALSE)$p.value/2))) |
|
|
143 |
> wpval <- c(wilcox.test(x1 ~ y, data = mydata, |
|
|
144 |
+ exact = FALSE, correct = FALSE)$p.value, |
|
|
145 |
+ wilcox.test(x2 ~ y, data = mydata, |
|
|
146 |
+ exact = FALSE, correct = FALSE)$p.value, |
|
|
147 |
+ wilcox.test(x3 ~ y, data = mydata, |
|
|
148 |
+ exact = FALSE, correct = FALSE)$p.value) |
|
|
149 |
> stopifnot(isequal(wstat, pvals[[1]])) |
|
|
150 |
> stopifnot(isequal(wpval, 1 - pvals[[2]])) |
|
|
151 |
> |
|
|
152 |
> ### Monte-Carlo approximations of P-Values, min-P approach |
|
|
153 |
> gtctrl@testtype <- factor("MonteCarlo", levels = levels(gtctrl@testtype)) |
|
|
154 |
> gtctrl@nresample <- as.integer(19999) |
|
|
155 |
> pvals <- .Call("R_GlobalTest", ls, ls@weights, tm, varctrl, gtctrl, PACKAGE = "party") |
|
|
156 |
> stopifnot(isequal(wstat, pvals[[1]])) |
|
|
157 |
> stopifnot(all(wpval < (1 - pvals[[2]]))) |
|
|
158 |
> |
|
|
159 |
> proc.time() |
|
|
160 |
user system elapsed |
|
|
161 |
0.956 0.040 0.996 |