|
a |
|
b/partyMod/src/TestStatistic.c |
|
|
1 |
|
|
|
2 |
/** |
|
|
3 |
Test statistics for conditional inference |
|
|
4 |
*\file TestStatistic.c |
|
|
5 |
*\author $Author$ |
|
|
6 |
*\date $Date$ |
|
|
7 |
*/ |
|
|
8 |
|
|
|
9 |
#include "party.h" |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
/** |
|
|
13 |
Standardizes a statistic t of length pq with mean mu and covariance Sigma |
|
|
14 |
for variances > tol \n |
|
|
15 |
*\param t the vector of statistics |
|
|
16 |
*\param mu expectations |
|
|
17 |
*\param Sigma covariance matrix |
|
|
18 |
*\param pq dimension of t |
|
|
19 |
*\param tol tolerance for variances |
|
|
20 |
*\param ans return value; a pointer to a REALSXP-vector of length pq |
|
|
21 |
*/ |
|
|
22 |
|
|
|
23 |
void C_standardize(const double *t, const double *mu, const double *Sigma, |
|
|
24 |
int pq, double tol, double *ans) { |
|
|
25 |
|
|
|
26 |
int i; |
|
|
27 |
double sd; |
|
|
28 |
|
|
|
29 |
for (i = 0; i < pq; i++) { |
|
|
30 |
sd = Sigma[i*pq + i]; |
|
|
31 |
if (sd > tol) |
|
|
32 |
ans[i] = (t[i] - mu[i])/sqrt(sd); |
|
|
33 |
else |
|
|
34 |
ans[i] = 0.0; |
|
|
35 |
} |
|
|
36 |
} |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
/** |
|
|
40 |
Absolute values of standardized statistics |
|
|
41 |
*\param t the vector of statistics |
|
|
42 |
*\param mu expectations |
|
|
43 |
*\param Sigma covariance matrix |
|
|
44 |
*\param pq dimension of t |
|
|
45 |
*\param tol tolerance for variances |
|
|
46 |
*\param ans return value; a pointer to a REALSXP-vector of length pq |
|
|
47 |
*/ |
|
|
48 |
|
|
|
49 |
void C_absstandardize(const double *t, const double *mu, const double *Sigma, |
|
|
50 |
int pq, double tol, double *ans) { |
|
|
51 |
|
|
|
52 |
C_standardize(t, mu, Sigma, pq, tol, ans); |
|
|
53 |
C_abs(ans, pq); |
|
|
54 |
} |
|
|
55 |
|
|
|
56 |
|
|
|
57 |
/** |
|
|
58 |
Maximum absolute values of standardized statistics |
|
|
59 |
*\param t the vector of statistics |
|
|
60 |
*\param mu expectations |
|
|
61 |
*\param Sigma covariance matrix |
|
|
62 |
*\param pq dimension of t |
|
|
63 |
*\param tol tolerance for variances |
|
|
64 |
*/ |
|
|
65 |
|
|
|
66 |
double C_maxabsTestStatistic(const double *t, const double *mu, const double *Sigma, |
|
|
67 |
int pq, double tol) { |
|
|
68 |
|
|
|
69 |
double *mem, ans; |
|
|
70 |
|
|
|
71 |
mem = Calloc(pq, double); |
|
|
72 |
C_absstandardize(t, mu, Sigma, pq, tol, mem); |
|
|
73 |
ans = C_max(mem, pq); |
|
|
74 |
Free(mem); |
|
|
75 |
return(ans); |
|
|
76 |
} |
|
|
77 |
|
|
|
78 |
|
|
|
79 |
/** |
|
|
80 |
R-interface to C_maxabsTestStatistic |
|
|
81 |
*\param t the vector of statistics |
|
|
82 |
*\param mu expectations |
|
|
83 |
*\param Sigma covariance matrix |
|
|
84 |
*\param tol tolerance for variances |
|
|
85 |
*/ |
|
|
86 |
|
|
|
87 |
SEXP R_maxabsTestStatistic(SEXP t, SEXP mu, SEXP Sigma, SEXP tol) { |
|
|
88 |
|
|
|
89 |
SEXP ans; |
|
|
90 |
int pq; |
|
|
91 |
|
|
|
92 |
pq = LENGTH(t); |
|
|
93 |
|
|
|
94 |
PROTECT(ans = allocVector(REALSXP, 1)); |
|
|
95 |
REAL(ans)[0] = C_maxabsTestStatistic(REAL(t), REAL(mu), REAL(Sigma), pq, |
|
|
96 |
REAL(tol)[0]); |
|
|
97 |
UNPROTECT(1); |
|
|
98 |
return(ans); |
|
|
99 |
} |
|
|
100 |
|
|
|
101 |
|
|
|
102 |
/** |
|
|
103 |
Quadratic form t(t - mu) SigmaPlus (t - mu) \n |
|
|
104 |
*\param t the vector of statistics |
|
|
105 |
*\param mu expectations |
|
|
106 |
*\param SigmaPlus Moore-Penrose inverse |
|
|
107 |
*\param pq dimension of t |
|
|
108 |
*/ |
|
|
109 |
|
|
|
110 |
double C_quadformTestStatistic(const double *t, const double *mu, |
|
|
111 |
const double *SigmaPlus, int pq) { |
|
|
112 |
|
|
|
113 |
int i, j; |
|
|
114 |
double quadform = 0.0, *tmmu, *tmmuSigmaPlus; |
|
|
115 |
|
|
|
116 |
tmmu = Calloc(pq, double); |
|
|
117 |
for (i = 0; i < pq; i++) |
|
|
118 |
tmmu[i] = t[i] - mu[i]; |
|
|
119 |
|
|
|
120 |
tmmuSigmaPlus = Calloc(pq, double); |
|
|
121 |
for (i = 0; i < pq; i++) { |
|
|
122 |
tmmuSigmaPlus[i] = 0.0; |
|
|
123 |
for (j = 0; j < pq; j++) |
|
|
124 |
tmmuSigmaPlus[i] += tmmu[j] * SigmaPlus[i * pq + j]; |
|
|
125 |
quadform += tmmuSigmaPlus[i] * tmmu[i]; |
|
|
126 |
} |
|
|
127 |
|
|
|
128 |
Free(tmmu); Free(tmmuSigmaPlus); |
|
|
129 |
return(quadform); |
|
|
130 |
} |
|
|
131 |
|
|
|
132 |
|
|
|
133 |
/** |
|
|
134 |
R-interface to C_quadformTestStatistic \n |
|
|
135 |
*\param t the vector of statistics |
|
|
136 |
*\param mu expectations |
|
|
137 |
*\param SigmaPlus Moore-Penrose inverse |
|
|
138 |
*/ |
|
|
139 |
|
|
|
140 |
SEXP R_quadformTestStatistic(SEXP t, SEXP mu, SEXP SigmaPlus) { |
|
|
141 |
|
|
|
142 |
SEXP ans; |
|
|
143 |
int pq; |
|
|
144 |
|
|
|
145 |
pq = LENGTH(t); |
|
|
146 |
PROTECT(ans = allocVector(REALSXP, 1)); |
|
|
147 |
REAL(ans)[0] = C_quadformTestStatistic(REAL(t), |
|
|
148 |
REAL(mu), REAL(SigmaPlus), pq); |
|
|
149 |
UNPROTECT(1); |
|
|
150 |
return(ans); |
|
|
151 |
} |