|
a |
|
b/partyMod/src/LinearStatistic.c |
|
|
1 |
|
|
|
2 |
/** |
|
|
3 |
Linear statistics for conditional inference based on Strasser & Weber (1999) |
|
|
4 |
*\file LinearStatistic.c |
|
|
5 |
*\author $Author$ |
|
|
6 |
*\date $Date$ |
|
|
7 |
*/ |
|
|
8 |
|
|
|
9 |
#include "party.h" |
|
|
10 |
|
|
|
11 |
|
|
|
12 |
/** |
|
|
13 |
Computes the linear statistic, formula (1) in the paper\n |
|
|
14 |
*\param x values of the transformation |
|
|
15 |
*\param p dimension of the transformation |
|
|
16 |
*\param y values of the influence function |
|
|
17 |
*\param q dimension of the influence function |
|
|
18 |
*\param weights case weights |
|
|
19 |
*\param n number of observations |
|
|
20 |
*\param ans return value; a pointer to a REALSXP-vector of length pq |
|
|
21 |
*/ |
|
|
22 |
|
|
|
23 |
void C_LinearStatistic (const double *x, const int p, |
|
|
24 |
const double *y, const int q, |
|
|
25 |
const double *weights, const int n, |
|
|
26 |
double *ans) { |
|
|
27 |
|
|
|
28 |
int i, j, k, kp, kn; |
|
|
29 |
double tmp; |
|
|
30 |
|
|
|
31 |
for (k = 0; k < q; k++) { |
|
|
32 |
|
|
|
33 |
kn = k * n; |
|
|
34 |
kp = k * p; |
|
|
35 |
for (j = 0; j < p; j++) ans[kp + j] = 0.0; |
|
|
36 |
|
|
|
37 |
for (i = 0; i < n; i++) { |
|
|
38 |
|
|
|
39 |
/* optimization: weights are often zero */ |
|
|
40 |
if (weights[i] == 0.0) continue; |
|
|
41 |
|
|
|
42 |
tmp = y[kn + i] * weights[i]; |
|
|
43 |
|
|
|
44 |
for (j = 0; j < p; j++) |
|
|
45 |
ans[kp + j] += x[j*n + i] * tmp; |
|
|
46 |
} |
|
|
47 |
} |
|
|
48 |
} |
|
|
49 |
|
|
|
50 |
|
|
|
51 |
/** |
|
|
52 |
R-interface to C_LinearStatistic \n |
|
|
53 |
*\param x values of the transformation |
|
|
54 |
*\param y values of the influence function |
|
|
55 |
*\param weights case weights |
|
|
56 |
*/ |
|
|
57 |
|
|
|
58 |
SEXP R_LinearStatistic(SEXP x, SEXP y, SEXP weights) { |
|
|
59 |
|
|
|
60 |
/* the return value; a vector of type REALSXP */ |
|
|
61 |
SEXP ans; |
|
|
62 |
|
|
|
63 |
/* dimensions */ |
|
|
64 |
int n, p, q; |
|
|
65 |
|
|
|
66 |
/* |
|
|
67 |
* only a basic check: we do not coerce objects since this |
|
|
68 |
* function is for internal use only |
|
|
69 |
*/ |
|
|
70 |
|
|
|
71 |
if (!isReal(x) || !isReal(y) || !isReal(weights)) |
|
|
72 |
error("LinStat: arguments are not of type REALSXP"); |
|
|
73 |
|
|
|
74 |
n = nrow(y); |
|
|
75 |
if (nrow(x) != n || LENGTH(weights) != n) |
|
|
76 |
error("LinStat: dimensions don't match"); |
|
|
77 |
|
|
|
78 |
q = ncol(y); |
|
|
79 |
p = ncol(x); |
|
|
80 |
|
|
|
81 |
PROTECT(ans = allocVector(REALSXP, p*q)); |
|
|
82 |
|
|
|
83 |
C_LinearStatistic(REAL(x), p, REAL(y), q, REAL(weights), n, |
|
|
84 |
REAL(ans)); |
|
|
85 |
|
|
|
86 |
UNPROTECT(1); |
|
|
87 |
return(ans); |
|
|
88 |
} |
|
|
89 |
|
|
|
90 |
|
|
|
91 |
/** |
|
|
92 |
Conditional expectation and covariance of the influence function\n |
|
|
93 |
*\param y values of the influence function |
|
|
94 |
*\param q dimension of the influence function |
|
|
95 |
*\param weights case weights |
|
|
96 |
*\param n number of observations |
|
|
97 |
*\param ans return value; an object of class `ExpectCovarInfluence' |
|
|
98 |
*/ |
|
|
99 |
|
|
|
100 |
void C_ExpectCovarInfluence(const double* y, const int q, |
|
|
101 |
const double* weights, const int n, |
|
|
102 |
SEXP ans) { |
|
|
103 |
|
|
|
104 |
int i, j, k, jq; |
|
|
105 |
|
|
|
106 |
/* pointers to the slots of object ans */ |
|
|
107 |
double *dExp_y, *dCov_y, *dsweights, tmp; |
|
|
108 |
|
|
|
109 |
/* return values: set to zero initially */ |
|
|
110 |
dExp_y = REAL(GET_SLOT(ans, PL2_expectationSym)); |
|
|
111 |
for (j = 0; j < q; j++) dExp_y[j] = 0.0; |
|
|
112 |
|
|
|
113 |
dCov_y = REAL(GET_SLOT(ans, PL2_covarianceSym)); |
|
|
114 |
for (j = 0; j < q*q; j++) dCov_y[j] = 0.0; |
|
|
115 |
|
|
|
116 |
dsweights = REAL(GET_SLOT(ans, PL2_sumweightsSym)); |
|
|
117 |
|
|
|
118 |
/* compute the sum of the weights */ |
|
|
119 |
|
|
|
120 |
dsweights[0] = 0; |
|
|
121 |
for (i = 0; i < n; i++) dsweights[0] += weights[i]; |
|
|
122 |
if (dsweights[0] <= 1) |
|
|
123 |
error("C_ExpectCovarInfluence: sum of weights is less than one"); |
|
|
124 |
|
|
|
125 |
/* |
|
|
126 |
* Expectation of the influence function |
|
|
127 |
*/ |
|
|
128 |
|
|
|
129 |
for (i = 0; i < n; i++) { |
|
|
130 |
|
|
|
131 |
/* observations with zero case weights do not contribute */ |
|
|
132 |
|
|
|
133 |
if (weights[i] == 0.0) continue; |
|
|
134 |
|
|
|
135 |
for (j = 0; j < q; j++) |
|
|
136 |
dExp_y[j] += weights[i] * y[j * n + i]; |
|
|
137 |
} |
|
|
138 |
|
|
|
139 |
for (j = 0; j < q; j++) |
|
|
140 |
dExp_y[j] = dExp_y[j] / dsweights[0]; |
|
|
141 |
|
|
|
142 |
|
|
|
143 |
/* |
|
|
144 |
* Covariance of the influence function |
|
|
145 |
*/ |
|
|
146 |
|
|
|
147 |
for (i = 0; i < n; i++) { |
|
|
148 |
|
|
|
149 |
if (weights[i] == 0.0) continue; |
|
|
150 |
|
|
|
151 |
for (j = 0; j < q; j++) { |
|
|
152 |
tmp = weights[i] * (y[j * n + i] - dExp_y[j]); |
|
|
153 |
jq = j * q; |
|
|
154 |
for (k = 0; k < q; k++) |
|
|
155 |
dCov_y[jq + k] += tmp * (y[k * n + i] - dExp_y[k]); |
|
|
156 |
} |
|
|
157 |
} |
|
|
158 |
|
|
|
159 |
for (j = 0; j < q*q; j++) |
|
|
160 |
dCov_y[j] = dCov_y[j] / dsweights[0]; |
|
|
161 |
} |
|
|
162 |
|
|
|
163 |
|
|
|
164 |
/** |
|
|
165 |
R-interface to C_ExpectCovarInfluence\n |
|
|
166 |
*\param y values of the influence function |
|
|
167 |
*\param weights case weights |
|
|
168 |
*/ |
|
|
169 |
|
|
|
170 |
SEXP R_ExpectCovarInfluence(SEXP y, SEXP weights) { |
|
|
171 |
|
|
|
172 |
SEXP ans; |
|
|
173 |
int q, n; |
|
|
174 |
|
|
|
175 |
if (!isReal(y) || !isReal(weights)) |
|
|
176 |
error("R_ExpectCovarInfluence: arguments are not of type REALSXP"); |
|
|
177 |
|
|
|
178 |
n = nrow(y); |
|
|
179 |
q = ncol(y); |
|
|
180 |
|
|
|
181 |
if (LENGTH(weights) != n) |
|
|
182 |
error("R_ExpectCovarInfluence: vector of case weights does not have %d elements", n); |
|
|
183 |
|
|
|
184 |
/* allocate storage for return values */ |
|
|
185 |
PROTECT(ans = NEW_OBJECT(MAKE_CLASS("ExpectCovarInfluence"))); |
|
|
186 |
SET_SLOT(ans, PL2_expectationSym, |
|
|
187 |
PROTECT(allocVector(REALSXP, q))); |
|
|
188 |
SET_SLOT(ans, PL2_covarianceSym, |
|
|
189 |
PROTECT(allocMatrix(REALSXP, q, q))); |
|
|
190 |
SET_SLOT(ans, PL2_sumweightsSym, |
|
|
191 |
PROTECT(allocVector(REALSXP, 1))); |
|
|
192 |
|
|
|
193 |
C_ExpectCovarInfluence(REAL(y), q, REAL(weights), n, ans); |
|
|
194 |
|
|
|
195 |
UNPROTECT(4); |
|
|
196 |
return(ans); |
|
|
197 |
} |
|
|
198 |
|
|
|
199 |
|
|
|
200 |
/** |
|
|
201 |
Conditional expectation and covariance of the a linear statistic\n |
|
|
202 |
*\param x values of the transformation |
|
|
203 |
*\param p dimension of the transformation |
|
|
204 |
*\param y values of the influence function |
|
|
205 |
*\param q dimension of the influence function |
|
|
206 |
*\param weights case weights |
|
|
207 |
*\param n number of observations |
|
|
208 |
*\param expcovinf an object of class `ExpectCovarInfluence' |
|
|
209 |
*\param ans return value; an object of class `ExpectCovar' |
|
|
210 |
*/ |
|
|
211 |
|
|
|
212 |
void C_ExpectCovarLinearStatistic(const double* x, const int p, |
|
|
213 |
const double* y, const int q, |
|
|
214 |
const double* weights, const int n, |
|
|
215 |
const SEXP expcovinf, SEXP ans) { |
|
|
216 |
|
|
|
217 |
int i, j, k, pq; |
|
|
218 |
double sweights = 0.0, f1, f2, tmp; |
|
|
219 |
double *swx, *CT1, *CT2, *Covy_x_swx, |
|
|
220 |
*dExp_y, *dCov_y, *dExp_T, *dCov_T; |
|
|
221 |
|
|
|
222 |
pq = p * q; |
|
|
223 |
|
|
|
224 |
/* the expectation and covariance of the influence function */ |
|
|
225 |
dExp_y = REAL(GET_SLOT(expcovinf, PL2_expectationSym)); |
|
|
226 |
dCov_y = REAL(GET_SLOT(expcovinf, PL2_covarianceSym)); |
|
|
227 |
sweights = REAL(GET_SLOT(expcovinf, PL2_sumweightsSym))[0]; |
|
|
228 |
|
|
|
229 |
if (sweights <= 1.0) |
|
|
230 |
error("C_ExpectCovarLinearStatistic: sum of weights is less than one"); |
|
|
231 |
|
|
|
232 |
/* prepare for storing the results */ |
|
|
233 |
dExp_T = REAL(GET_SLOT(ans, PL2_expectationSym)); |
|
|
234 |
dCov_T = REAL(GET_SLOT(ans, PL2_covarianceSym)); |
|
|
235 |
|
|
|
236 |
/* allocate storage: all helpers, initially zero */ |
|
|
237 |
swx = Calloc(p, double); /* p x 1 */ |
|
|
238 |
CT1 = Calloc(p * p, double); /* p x p */ |
|
|
239 |
|
|
|
240 |
for (i = 0; i < n; i++) { |
|
|
241 |
|
|
|
242 |
/* observations with zero case weights do not contribute */ |
|
|
243 |
if (weights[i] == 0.0) continue; |
|
|
244 |
|
|
|
245 |
for (k = 0; k < p; k++) { |
|
|
246 |
tmp = weights[i] * x[k * n + i]; |
|
|
247 |
swx[k] += tmp; |
|
|
248 |
|
|
|
249 |
/* covariance part */ |
|
|
250 |
for (j = 0; j < p; j++) { |
|
|
251 |
CT1[j * p + k] += tmp * x[j * n + i]; |
|
|
252 |
} |
|
|
253 |
} |
|
|
254 |
} |
|
|
255 |
|
|
|
256 |
/* |
|
|
257 |
* dExp_T: expectation of the linear statistic T |
|
|
258 |
*/ |
|
|
259 |
|
|
|
260 |
for (k = 0; k < p; k++) { |
|
|
261 |
for (j = 0; j < q; j++) |
|
|
262 |
dExp_T[j * p + k] = swx[k] * dExp_y[j]; |
|
|
263 |
} |
|
|
264 |
|
|
|
265 |
/* |
|
|
266 |
* dCov_T: covariance of the linear statistic T |
|
|
267 |
*/ |
|
|
268 |
|
|
|
269 |
f1 = sweights/(sweights - 1); |
|
|
270 |
f2 = (1/(sweights - 1)); |
|
|
271 |
|
|
|
272 |
if (pq == 1) { |
|
|
273 |
dCov_T[0] = f1 * dCov_y[0] * CT1[0]; |
|
|
274 |
dCov_T[0] -= f2 * dCov_y[0] * swx[0] * swx[0]; |
|
|
275 |
} else { |
|
|
276 |
/* two more helpers needed */ |
|
|
277 |
CT2 = Calloc(pq * pq, double); /* pq x pq */ |
|
|
278 |
Covy_x_swx = Calloc(pq * q, double); /* pq x q */ |
|
|
279 |
|
|
|
280 |
C_kronecker(dCov_y, q, q, CT1, p, p, dCov_T); |
|
|
281 |
C_kronecker(dCov_y, q, q, swx, p, 1, Covy_x_swx); |
|
|
282 |
C_kronecker(Covy_x_swx, pq, q, swx, 1, p, CT2); |
|
|
283 |
|
|
|
284 |
for (k = 0; k < (pq * pq); k++) |
|
|
285 |
dCov_T[k] = f1 * dCov_T[k] - f2 * CT2[k]; |
|
|
286 |
|
|
|
287 |
/* clean up */ |
|
|
288 |
Free(CT2); Free(Covy_x_swx); |
|
|
289 |
} |
|
|
290 |
|
|
|
291 |
/* clean up */ |
|
|
292 |
Free(swx); Free(CT1); |
|
|
293 |
} |
|
|
294 |
|
|
|
295 |
|
|
|
296 |
/** |
|
|
297 |
R-interface to C_ExpectCovarLinearStatistic\n |
|
|
298 |
*\param x values of the transformation |
|
|
299 |
*\param y values of the influence function |
|
|
300 |
*\param weights case weights |
|
|
301 |
*\param expcovinf an object of class `ExpectCovarInfluence' |
|
|
302 |
*/ |
|
|
303 |
|
|
|
304 |
SEXP R_ExpectCovarLinearStatistic(SEXP x, SEXP y, SEXP weights, |
|
|
305 |
SEXP expcovinf) { |
|
|
306 |
|
|
|
307 |
SEXP ans; |
|
|
308 |
int n, p, q, pq; |
|
|
309 |
|
|
|
310 |
/* determine the dimensions and some checks */ |
|
|
311 |
|
|
|
312 |
n = nrow(x); |
|
|
313 |
p = ncol(x); |
|
|
314 |
q = ncol(y); |
|
|
315 |
pq = p * q; |
|
|
316 |
|
|
|
317 |
if (nrow(y) != n) |
|
|
318 |
error("y does not have %d rows", n); |
|
|
319 |
if (LENGTH(weights) != n) |
|
|
320 |
error("vector of case weights does not have %d elements", n); |
|
|
321 |
|
|
|
322 |
PROTECT(ans = NEW_OBJECT(MAKE_CLASS("ExpectCovar"))); |
|
|
323 |
SET_SLOT(ans, PL2_expectationSym, |
|
|
324 |
PROTECT(allocVector(REALSXP, pq))); |
|
|
325 |
SET_SLOT(ans, PL2_covarianceSym, |
|
|
326 |
PROTECT(allocMatrix(REALSXP, pq, pq))); |
|
|
327 |
|
|
|
328 |
C_ExpectCovarLinearStatistic(REAL(x), p, REAL(y), q, |
|
|
329 |
REAL(weights), n, expcovinf, ans); |
|
|
330 |
|
|
|
331 |
UNPROTECT(3); |
|
|
332 |
return(ans); |
|
|
333 |
} |
|
|
334 |
|
|
|
335 |
|
|
|
336 |
/** |
|
|
337 |
Linear Statistic with permuted indices\n |
|
|
338 |
*\param x values of the transformation |
|
|
339 |
*\param p dimension of the transformation |
|
|
340 |
*\param y values of the influence function |
|
|
341 |
*\param q dimension of the influence function |
|
|
342 |
*\param n number of observations |
|
|
343 |
*\param nperm number of permutations |
|
|
344 |
*\param indx indices for the x-part |
|
|
345 |
*\param perm (permuted) indices for the y-part |
|
|
346 |
*\param ans return value; a pointer to a REALSXP-vector of length pq |
|
|
347 |
*/ |
|
|
348 |
|
|
|
349 |
void C_PermutedLinearStatistic(const double *x, const int p, |
|
|
350 |
const double *y, const int q, |
|
|
351 |
const int n, const int nperm, |
|
|
352 |
const int *indx, const int *perm, |
|
|
353 |
double *ans) { |
|
|
354 |
|
|
|
355 |
int i, j, k, kp, kn, knpi; |
|
|
356 |
|
|
|
357 |
for (k = 0; k < q; k++) { |
|
|
358 |
|
|
|
359 |
kn = k * n; |
|
|
360 |
kp = k * p; |
|
|
361 |
for (j = 0; j < p; j++) ans[kp + j] = 0.0; |
|
|
362 |
|
|
|
363 |
for (i = 0; i < nperm; i++) { |
|
|
364 |
|
|
|
365 |
knpi = kn + perm[i]; |
|
|
366 |
|
|
|
367 |
for (j = 0; j < p; j++) |
|
|
368 |
ans[kp + j] += x[j*n + indx[i]] * y[knpi]; |
|
|
369 |
} |
|
|
370 |
} |
|
|
371 |
} |
|
|
372 |
|
|
|
373 |
|
|
|
374 |
/** |
|
|
375 |
Linear Statistic with permuted indices\n |
|
|
376 |
*\param x values of the transformation |
|
|
377 |
*\param y values of the influence function |
|
|
378 |
*\param indx indices for the x-part |
|
|
379 |
*\param perm (permuted) indices for the y-part |
|
|
380 |
*/ |
|
|
381 |
|
|
|
382 |
SEXP R_PermutedLinearStatistic(SEXP x, SEXP y, SEXP indx, SEXP perm) { |
|
|
383 |
|
|
|
384 |
SEXP ans; |
|
|
385 |
int n, nperm, p, q, i, *iperm, *iindx; |
|
|
386 |
|
|
|
387 |
/* |
|
|
388 |
only a basic check |
|
|
389 |
*/ |
|
|
390 |
|
|
|
391 |
if (!isReal(x) || !isReal(y)) |
|
|
392 |
error("R_PermutedLinearStatistic: arguments are not of type REALSXP"); |
|
|
393 |
|
|
|
394 |
if (!isInteger(perm)) |
|
|
395 |
error("R_PermutedLinearStatistic: perm is not of type INTSXP"); |
|
|
396 |
if (!isInteger(indx)) |
|
|
397 |
error("R_PermutedLinearStatistic: indx is not of type INTSXP"); |
|
|
398 |
|
|
|
399 |
n = nrow(y); |
|
|
400 |
nperm = LENGTH(perm); |
|
|
401 |
iperm = INTEGER(perm); |
|
|
402 |
if (LENGTH(indx) != nperm) |
|
|
403 |
error("R_PermutedLinearStatistic: dimensions don't match"); |
|
|
404 |
iindx = INTEGER(indx); |
|
|
405 |
|
|
|
406 |
if (nrow(x) != n) |
|
|
407 |
error("R_PermutedLinearStatistic: dimensions don't match"); |
|
|
408 |
|
|
|
409 |
for (i = 0; i < nperm; i++) { |
|
|
410 |
if (iperm[i] < 0 || iperm[i] > (n - 1) ) |
|
|
411 |
error("R_PermutedLinearStatistic: perm is not between 1 and nobs"); |
|
|
412 |
if (iindx[i] < 0 || iindx[i] > (n - 1) ) |
|
|
413 |
error("R_PermutedLinearStatistic: indx is not between 1 and nobs"); |
|
|
414 |
} |
|
|
415 |
|
|
|
416 |
q = ncol(y); |
|
|
417 |
p = ncol(x); |
|
|
418 |
|
|
|
419 |
PROTECT(ans = allocVector(REALSXP, p*q)); |
|
|
420 |
|
|
|
421 |
C_PermutedLinearStatistic(REAL(x), p, REAL(y), q, n, nperm, |
|
|
422 |
iindx, iperm, REAL(ans)); |
|
|
423 |
|
|
|
424 |
UNPROTECT(1); |
|
|
425 |
return(ans); |
|
|
426 |
} |