a b/partyMod/man/ctree_memory.Rd
1
\name{Memory Allocation}
2
\alias{ctree_memory}
3
\title{ Memory Allocation }
4
\description{
5
6
    This function sets up the memory needed for tree growing. It might be 
7
    convenient to allocate memory only once but build multiple trees.
8
}
9
\usage{
10
ctree_memory(object, MPinv = FALSE)
11
}
12
\arguments{
13
  \item{object}{an object of class \code{LearningSample}.}
14
  \item{MPinv}{a logical indicating whether memory for the Moore-Penrose
15
               inverse of covariance matrices should be allocated. }
16
}
17
\details{
18
19
  This function is normally not to be called by users. However, for
20
  performance reasons it might be nice to allocate memory and re-fit trees
21
  using the same memory for the computations. Below is an example.
22
23
}
24
\value{
25
  An object of class \code{TreeFitMemory}.
26
}
27
\examples{
28
29
    set.seed(290875)
30
31
    ### setup learning sample
32
    airq <- subset(airquality, !is.na(Ozone))
33
    ls <- dpp(conditionalTree, Ozone ~ ., data = airq)
34
35
    ### setup memory and controls 
36
    mem <- ctree_memory(ls)
37
    ct <- ctree_control(teststat = "max")
38
39
    ### fit 50 trees on bootstrap samples
40
    bs <- rmultinom(50, nrow(airq), rep(1, nrow(airq))/nrow(airq))
41
    storage.mode(bs) <- "double"
42
    cfit <- conditionalTree@fit
43
    ens <- apply(bs, 2, function(w) cfit(ls, ct, weights = w, 
44
                                         fitmem = mem))
45
46
}
47
\keyword{misc}