--- a +++ b/partyMod/man/RandomForest-class.Rd @@ -0,0 +1,56 @@ +\name{RandomForest-class} +\docType{class} +\alias{RandomForest-class} +\alias{treeresponse,RandomForest-method} +\alias{weights,RandomForest-method} +\alias{where,RandomForest-method} +\alias{show,RandomForest-method} + +\title{Class "RandomForest"} +\description{A class for representing random forest ensembles. } +\section{Objects from the Class}{ +Objects can be created by calls of the form \code{new("RandomForest", ...)}. +} +\section{Slots}{ + \describe{ + \item{\code{ensemble}:}{Object of class \code{"list"}, each element + being an object of class \code{"\linkS4class{BinaryTree}"}.} + \item{\code{data}:}{ an object of class \code{"\linkS4class{ModelEnv}"}.} + \item{\code{initweights}:}{ a vector of initial weights.} + \item{\code{weights}:}{ a list of weights defining the sub-samples.} + \item{\code{where}:}{ a matrix of integers vectors of length n (number of + observations in the learning sample) giving the + number of the terminal node the corresponding + observations is element of (in each tree).} + \item{\code{data}:}{ an object of class \code{"\linkS4class{ModelEnv}"}.} + \item{\code{responses}:}{ an object of class \code{"VariableFrame"} + storing the values of the response variable(s). } + \item{\code{cond_distr_response}:}{ a function computing the conditional + distribution of the response. } + \item{\code{predict_response}:}{ a function for computing predictions. } + \item{\code{prediction_weights}:}{ a function for extracting weights from + terminal nodes. } + \item{\code{get_where}:}{ a function for determining the number + of terminal nodes observations fall into. } + \item{\code{update}:}{ a function for updating weights.} + } +} +\section{Methods}{ + \describe{ + \item{treeresponse}{\code{signature(object = "RandomForest")}: ... } + \item{weights}{\code{signature(object = "RandomForest")}: ... } + \item{where}{\code{signature(object = "RandomForest")}: ... } + } +} +\examples{ + + set.seed(290875) + + ### honest (i.e., out-of-bag) cross-classification of + ### true vs. predicted classes + data("mammoexp", package = "TH.data") + table(mammoexp$ME, predict(cforest(ME ~ ., data = mammoexp, + control = cforest_unbiased(ntree = 50)), + OOB = TRUE)) +} +\keyword{classes}