[fbf06f]: / partyMod / demo / strucchange-perm.R

Download this file

238 lines (191 with data), 7.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
###################
## Preliminaries ##
###################
## packages
library("coin")
library("strucchange")
library("lattice")
## random seed
rseed <- 20061103
## theme for lattice/trellis graphics
trellis.par.set(theme = canonical.theme(color = FALSE))
######################
## Boston homicides ##
######################
## time series plot
data("BostonHomicide", package = "strucchange")
hom_month <- zoo(as.vector(BostonHomicide$homicides), as.yearmon(as.vector(time(BostonHomicide$homicides))))
hom_year <- aggregate(hom_month, function(x) as.numeric(floor(x)), mean)
plot(hom_month, col = grey(0.7), lwd = 2, ylab = "Number of homicides", xlab = "Time")
lines(hom_year, type = "b")
## monthly data
hom_month <- data.frame(
log_homicides = log(coredata(hom_month) + 0.5),
time = as.numeric(time(hom_month)))
## asymptotic unconditional test
sctest(gefp(log_homicides ~ 1, data = hom_month), functional = supLM(0.1))
## asymptotic conditional test
set.seed(rseed)
maxstat_test(log_homicides ~ time, data = hom_month, minprob = 0.1)
## approximate conditional test
set.seed(rseed)
maxstat_test(log_homicides ~ time, data = hom_month, minprob = 0.1, distribution = approximate(9999))
## annual data
hom_year <- data.frame(
homicides = coredata(hom_year),
time = time(hom_year))
## asymptotic unconditional test
sctest(gefp(homicides ~ 1, data = hom_year), functional = supLM(0.1))
## asymptotic conditional test
set.seed(rseed)
maxstat_test(homicides ~ time, data = hom_year, minprob = 0.1)
## approximate conditional test
set.seed(rseed)
maxstat_test(homicides ~ time, data = hom_year, minprob = 0.1, distribution = approximate(9999))
## note that the manuscript computes the exact conditional p-value
## by exhaustive search (rather than approximating via 10,000 simulations)
###########################
## Hiring discrimination ##
###########################
## data
hire <- cbind(c(2, 0, 0, 0, 5, 14), c(427, 86, 104, 180, 111, 59))
hire <- data.frame(
resp = factor(unlist(sapply(1:nrow(hire), function(i) rep(c("female", "male"), hire[i,])))),
time = as.numeric(rep(1991:1996, rowSums(hire))))
## visualization
set.seed(rseed)
maxstat_test(resp ~ time, data = hire, distribution = approximate(9999), minprob = 0.05)
################
## CO2 reflux ##
################
## data
data("CWD", package = "coin")
lwood <- reshape(CWD, varying = paste("sample", c(2:4,6:8), sep = ""),
timevar = "tree", direction = "long", v.names = "sample")
lwood$tree <- factor(lwood$tree)
## visualization
print(xyplot(sample ~ time | tree, data = lwood, type = "b",
scales = list(y = list(relation = "free")),
layout = c(3, 2), xlab = "Time", ylab = expression(paste(CO[2], " reflux")),
as.table = TRUE))
## test
(cwd_mt <- maxstat_test(sample2 + sample3 + sample4 + sample6 + sample7 + sample8 ~ trend,
data = CWD, distribution = approximate(1e5)))
## maximally selected statistics with 5% critical value
cwd_st <- statistic(cwd_mt, "standardized")
cwd_st <- data.frame(cwd_st, time = CWD$time[1] + CWD$trend[2:11])
cwd_st <- reshape(cwd_st, varying = paste("sample", c(2:4,6:8), sep = ""),
timevar = "tree", direction = "long", v.names = "sample")
cwd_st$tree <- factor(cwd_st$tree)
cwd_q <- qperm(cwd_mt, 0.95)
print(xyplot(sample ~ time | tree, data = cwd_st, type = "b",
panel = function(...) {
panel.xyplot(...)
panel.abline(h = c(-cwd_q, cwd_q), col = 2)
panel.abline(h = 0, col = "gray")
},
layout = c(3, 2), xlab = "Time", ylab = "Test statistics", ylim = c(-3.5, 3.5),
as.table = TRUE))
##################################
## Dow Jones Industrial Average ##
##################################
## data
data("DJIA", package = "strucchange")
djia <- diff(log(DJIA)) * 100
djia_res <- coredata(djia - mean(djia))
djia_trafo <- cbind(Intercept = djia_res, Variance = djia_res^2 - mean(djia_res^2))
djia_time <- time(djia)
## visualization
plot(djia, xlab = "Time", ylab = "Dow Jones stock returns")
## test
set.seed(rseed)
djia_mt <- maxstat_test(djia_trafo ~ as.numeric(djia_time), distribution = approximate(9999), minprob = 0.1)
## maximally selected statistics
apply(abs(statistic(djia_mt, "standardized")), 2, max)
## critical values
qperm(djia_mt, 0.95)
## breakpoint
djia_point <- djia_time[floor(length(djia) * 0.1) + which.max(abs(statistic(djia_mt, "standardized")[,2]))]
## autocorrelation
djia_pre <- window(djia, end = djia_point)
djia_post <- window(djia, start = djia_point + 1)
ar1 <- function(x, digits = 3) {
x <- coredata(x)
x <- x - mean(x)
c(acf(x, plot = FALSE)$acf[2], acf(x^2, plot = FALSE)$acf[2])
}
ar1(djia_pre)
ar1(djia_post)
#######################
## Economic journals ##
#######################
## data
data("Journals", package = "AER")
Journals$age <- 2000 - Journals$foundingyear
Journals <- Journals[order(Journals$age),]
## model in root node
jour_lm <- lm(log(subs) ~ log(price/citations), data = Journals)
## test in root node
set.seed(rseed)
(jour_mt <- maxstat_test(estfun(jour_lm) ~ age, data = Journals, distribution = approximate(9999), minprob = 0.1))
## test information
jour_critval <- qperm(jour_mt, 0.95^(1/4))
jour_process <- statistic(jour_mt, "standardized")
jour_process <- zoo(jour_process, as.numeric(sapply(strsplit(rownames(jour_process), "x <= "), tail, 1)))
colnames(jour_process) <- c("Intercept", "Slope")
jour_point <- time(jour_process)[apply(coredata(abs(jour_process)), 2, which.max)]
## visualization of test in root node
mypanel <- function(x, y, subscripts, groups, panel = panel.xyplot,
col = 1, type = "p", pch = 20, lty = 1, lwd = 1, ...)
{
col <- rep(as.list(col), length = nlevels(groups))
type <- rep(as.list(type), length = nlevels(groups))
pch <- rep(as.list(pch), length = nlevels(groups))
lty <- rep(as.list(lty), length = nlevels(groups))
lwd <- rep(as.list(lwd), length = nlevels(groups))
for(g in 1:nlevels(groups)) {
idx <- g == groups[subscripts]
if (any(idx)) panel(x[idx], y[idx], ...,
col = col[[g]], type = type[[g]], pch = pch[[g]],
lty = lty[[g]], lwd = lwd[[g]])
grid::grid.lines(y = grid::unit(0, "native"), gp = grid::gpar(col = "gray"))
grid::grid.lines(y = grid::unit(jour_critval, "native"), gp = grid::gpar(col = 2))
}
}
print(xyplot(abs(jour_process), panel = mypanel,
xlab = "Time", type = "b", ylim = c(0, 6), as.table = TRUE))
### fit node with h(Y) = score and g(X) = maxstat_trafo
ytrf <- function(data) {
ret <- estfun(lm(data[[1]] ~ data[[2]]))
attr(ret, "assign") <- 1:2
ret
}
xtrf <- function(data) trafo(data, numeric_trafo = maxstat_trafo)
mynode <- function(data) {
vars <- c("society", "pages", "charpp", "age")
sapply(vars, function(v) {
f <- as.formula(paste("log(subs) + log(price/citations) ~", v))
it <- independence_test(f, data = data,
ytrafo = ytrf, xtrafo = xtrf, distribution = approximate(9999))
c(statistic(it), 1 - (1 - pvalue(it))^length(vars))
})
}
## fit all tree elements
jour_node <- factor(Journals$age <= 18, levels = c(TRUE, FALSE), labels = c("Node 2", "Node 3"))
jour_lm2 <- lm(log(subs) ~ log(price/citations), data = Journals[jour_node == "Node 2",])
jour_lm3 <- lm(log(subs) ~ log(price/citations), data = Journals[jour_node == "Node 3",])
## conduct tests in all leaves
set.seed(rseed)
jour_tree <- list(
mynode(Journals),
mynode(Journals[jour_node == "Node 2",]),
mynode(data = Journals[jour_node == "Node 3",])
)
## fitted models
plot(log(subs) ~ log(price/citations), data = Journals,
xlab = "log(price/citations)", ylab = "log(subscriptions)",
pch = c(24, 21)[jour_node], bg = hcl(c(0, 240), 50, 70)[jour_node])
abline(coef(jour_lm2), col = hcl( 0, 80, 30), lty = 5, lwd = 1.7)
abline(coef(jour_lm3), col = hcl(240, 80, 30), lty = 1, lwd = 1.7)
legend("bottomleft", c(expression(age > 18), expression(age <= 18)),
pch = c(19, 17), lty = c(1, 5), col = hcl(c(240, 0), 80, 30), bty = "n")