|
a |
|
b/partyMod/R/Variables.R |
|
|
1 |
|
|
|
2 |
# $Id$ |
|
|
3 |
|
|
|
4 |
### factor handling |
|
|
5 |
ff_trafo <- function(x) { |
|
|
6 |
### temporarily define `na.pass' as na.action |
|
|
7 |
opt <- options() |
|
|
8 |
on.exit(options(opt)) |
|
|
9 |
options(na.action = na.pass) |
|
|
10 |
if (nlevels(x) == 1) { |
|
|
11 |
warning("factors at only one level may lead to problems") |
|
|
12 |
mm <- matrix(1, nrow = length(x)) |
|
|
13 |
} else { |
|
|
14 |
### construct design matrix _without_ intercept |
|
|
15 |
mm <- model.matrix(~ x - 1) |
|
|
16 |
} |
|
|
17 |
colnames(mm) <- levels(x) |
|
|
18 |
return(mm) |
|
|
19 |
} |
|
|
20 |
|
|
|
21 |
ptrafo <- function(data, numeric_trafo = id_trafo, factor_trafo = ff_trafo, |
|
|
22 |
ordered_trafo = of_trafo, surv_trafo = logrank_trafo, var_trafo = NULL) |
|
|
23 |
|
|
|
24 |
trafo(data = data, numeric_trafo = numeric_trafo, factor_trafo = |
|
|
25 |
factor_trafo, ordered_trafo = ordered_trafo, |
|
|
26 |
surv_trafo = surv_trafo, var_trafo = var_trafo) |
|
|
27 |
|
|
|
28 |
|
|
|
29 |
initVariableFrame.df <- function(obj, trafo = ptrafo, scores = NULL, response = FALSE, ...) { |
|
|
30 |
|
|
|
31 |
if (is.null(trafo)) trafo <- ptrafo |
|
|
32 |
if (response) { |
|
|
33 |
RET <- new("ResponseFrame", nrow(obj), ncol(obj)) |
|
|
34 |
tmp <- lapply(obj, function(x) { |
|
|
35 |
if (is.factor(x)) return(ff_trafo(x)) |
|
|
36 |
### FIXME |
|
|
37 |
if (inherits(x, "Surv")) return(logrank_trafo(x)) |
|
|
38 |
return(x) |
|
|
39 |
}) |
|
|
40 |
RET@predict_trafo <- as.matrix(as.data.frame(tmp)) |
|
|
41 |
storage.mode(RET@predict_trafo) <- "double" |
|
|
42 |
} else { |
|
|
43 |
RET <- new("VariableFrame", nrow(obj), ncol(obj)) |
|
|
44 |
} |
|
|
45 |
|
|
|
46 |
is_ordinal <- sapply(obj, is.ordered) |
|
|
47 |
is_nominal <- sapply(obj, is.factor) & !is_ordinal |
|
|
48 |
|
|
|
49 |
### assign user-specified scores to variables in `obj' |
|
|
50 |
if (!is.null(scores)) { |
|
|
51 |
if (!is.list(scores) || is.null(names(scores))) |
|
|
52 |
stop(sQuote("scores"), " is not a named list") |
|
|
53 |
scores <- scores[names(scores) %in% colnames(obj)] |
|
|
54 |
} |
|
|
55 |
if (!is.null(scores)) { |
|
|
56 |
for (n in names(scores)) { |
|
|
57 |
if (!(is.factor(obj[[n]]) && is.ordered(obj[[n]])) || |
|
|
58 |
nlevels(obj[[n]]) != length(scores[[n]])) |
|
|
59 |
stop("cannot assign scores to variable ", sQuote(n)) |
|
|
60 |
if (any(order(scores[[n]]) != 1:length(scores[[n]]))) |
|
|
61 |
stop("scores are not increasingly ordered") |
|
|
62 |
attr(obj[[n]], "scores") <- scores[[n]] |
|
|
63 |
} |
|
|
64 |
} |
|
|
65 |
|
|
|
66 |
RET@scores <- lapply(obj, function(x) { |
|
|
67 |
sc <- 0 |
|
|
68 |
if (is.ordered(x)) { |
|
|
69 |
sc <- attr(x, "scores") |
|
|
70 |
if (is.null(sc)) sc <- 1:nlevels(x) |
|
|
71 |
storage.mode(sc) <- "double" |
|
|
72 |
} |
|
|
73 |
sc |
|
|
74 |
}) |
|
|
75 |
|
|
|
76 |
### transformations |
|
|
77 |
jt <- trafo(obj) |
|
|
78 |
|
|
|
79 |
### for each variable |
|
|
80 |
xt <- vector(mode = "list", length = ncol(obj)) |
|
|
81 |
for (i in 1:ncol(obj)) |
|
|
82 |
xt[[i]] <- jt[,attr(jt, "assign") == i, drop = FALSE] |
|
|
83 |
rm(jt) |
|
|
84 |
|
|
|
85 |
### ordering |
|
|
86 |
ordering <- lapply(obj, function(x) { |
|
|
87 |
if (is.factor(x) && !is.ordered(x)) return(NULL) |
|
|
88 |
if (inherits(x, "Surv")) return(NULL) |
|
|
89 |
if (is.ordered(x)) return(as.integer(order(as.numeric(x)))) |
|
|
90 |
as.integer(order(x)) |
|
|
91 |
}) |
|
|
92 |
|
|
|
93 |
### div. |
|
|
94 |
levels <- lapply(obj, function(x) if(is.factor(x)) levels(x)) |
|
|
95 |
whichNA <- lapply(obj, function(x) which(is.na(x))) |
|
|
96 |
has_missings <- sapply(obj, function(x) any(is.na(x))) |
|
|
97 |
censored <- sapply(obj, function(x) inherits(x, "Surv")) |
|
|
98 |
|
|
|
99 |
### some "handwork" |
|
|
100 |
for (j in 1:ncol(obj)) { |
|
|
101 |
x <- obj[[j]] |
|
|
102 |
|
|
|
103 |
if (censored[j]) |
|
|
104 |
ordering[[j]] <- as.integer(order(xt[[j]])) |
|
|
105 |
|
|
|
106 |
if (is.factor(x)) { |
|
|
107 |
if (is_ordinal[j]) { |
|
|
108 |
storage.mode(xt[[j]]) <- "double" |
|
|
109 |
### R 2.5.0 does not allow to change the storage mode of factors |
|
|
110 |
class(obj[[j]]) <- "was_ordered" |
|
|
111 |
storage.mode(obj[[j]]) <- "double" |
|
|
112 |
} else { |
|
|
113 |
storage.mode(obj[[j]]) <- "integer" |
|
|
114 |
} |
|
|
115 |
} else { |
|
|
116 |
storage.mode(obj[[j]]) <- "double" |
|
|
117 |
} |
|
|
118 |
nas <- is.na(x) |
|
|
119 |
xt[[j]][nas, drop = FALSE] <- 0 |
|
|
120 |
} |
|
|
121 |
|
|
|
122 |
RET@transformations <- xt |
|
|
123 |
RET@is_nominal <- is_nominal |
|
|
124 |
RET@is_ordinal <- is_ordinal |
|
|
125 |
RET@is_censored <- censored |
|
|
126 |
RET@variables <- obj |
|
|
127 |
RET@levels <- levels |
|
|
128 |
RET@ordering <- ordering |
|
|
129 |
RET@has_missings <- has_missings |
|
|
130 |
RET@whichNA <- whichNA |
|
|
131 |
|
|
|
132 |
if (response) { |
|
|
133 |
RET@test_trafo <- as.matrix(as.data.frame(xt)) |
|
|
134 |
storage.mode(RET@test_trafo) <- "double" |
|
|
135 |
} |
|
|
136 |
RET |
|
|
137 |
} |
|
|
138 |
|
|
|
139 |
initVariableFrame.matrix <- function(obj, response = FALSE, ...) { |
|
|
140 |
|
|
|
141 |
if (response) |
|
|
142 |
return(initVariableFrame(as.data.frame(obj, ..., response = TRUE))) |
|
|
143 |
|
|
|
144 |
storage.mode(obj) <- "double" |
|
|
145 |
n <- nrow(obj) |
|
|
146 |
p <- ncol(obj) |
|
|
147 |
RET <- new("VariableFrame", n, p) |
|
|
148 |
is_ordinal <- rep(FALSE, p) |
|
|
149 |
is_nominal <- rep(FALSE, p) |
|
|
150 |
|
|
|
151 |
RET@scores <- vector(mode = "list", length = p) |
|
|
152 |
|
|
|
153 |
lobj <- vector(mode = "list", length = p) |
|
|
154 |
for (i in 1:p) lobj[[i]] <- obj[,i,drop = FALSE] |
|
|
155 |
obj <- lobj |
|
|
156 |
|
|
|
157 |
### ordering |
|
|
158 |
ordering <- lapply(obj, function(x) { |
|
|
159 |
as.integer(order(x)) |
|
|
160 |
}) |
|
|
161 |
|
|
|
162 |
### div. |
|
|
163 |
levels <- vector(mode = "list", length = p) |
|
|
164 |
whichNA <- lapply(obj, function(x) which(is.na(x))) |
|
|
165 |
has_missings <- sapply(obj, function(x) any(is.na(x))) |
|
|
166 |
censored <- rep(FALSE, p) |
|
|
167 |
|
|
|
168 |
RET@transformations <- obj |
|
|
169 |
RET@is_nominal <- is_nominal |
|
|
170 |
RET@is_ordinal <- is_ordinal |
|
|
171 |
RET@is_censored <- censored |
|
|
172 |
RET@variables <- RET@transformations |
|
|
173 |
RET@levels <- levels |
|
|
174 |
RET@ordering <- ordering |
|
|
175 |
RET@has_missings <- has_missings |
|
|
176 |
RET@whichNA <- whichNA |
|
|
177 |
|
|
|
178 |
RET |
|
|
179 |
} |
|
|
180 |
|
|
|
181 |
setGeneric(name = "initVariableFrame", |
|
|
182 |
def = function(obj, ...) |
|
|
183 |
standardGeneric("initVariableFrame") |
|
|
184 |
) |
|
|
185 |
|
|
|
186 |
setMethod("initVariableFrame", |
|
|
187 |
signature = "data.frame", |
|
|
188 |
definition = initVariableFrame.df |
|
|
189 |
) |
|
|
190 |
|
|
|
191 |
setMethod("initVariableFrame", |
|
|
192 |
signature = "matrix", |
|
|
193 |
definition = initVariableFrame.matrix |
|
|
194 |
) |
|
|
195 |
|
|
|
196 |
setGeneric(name = "response", |
|
|
197 |
def = function(object, ...) |
|
|
198 |
standardGeneric("response") |
|
|
199 |
) |
|
|
200 |
|
|
|
201 |
setMethod("response", |
|
|
202 |
signature = "BinaryTree", |
|
|
203 |
definition = function(object) object@responses@variables |
|
|
204 |
) |
|
|
205 |
|
|
|
206 |
get_variables <- function(x) |
|
|
207 |
x@variables |
|
|
208 |
|
|
|
209 |
setGeneric(name = "LearningSample", |
|
|
210 |
def = function(object, ...) |
|
|
211 |
standardGeneric("LearningSample") |
|
|
212 |
) |
|
|
213 |
|
|
|
214 |
LearningSample.matrix <- function(object, response, ...) { |
|
|
215 |
|
|
|
216 |
new("LearningSample", inputs = inp <- initVariableFrame(object), |
|
|
217 |
responses = initVariableFrame(as.data.frame(response), response = TRUE, ...), |
|
|
218 |
weights = rep(1, inp@nobs), nobs = inp@nobs, |
|
|
219 |
ninputs = inp@ninputs) |
|
|
220 |
} |
|
|
221 |
|
|
|
222 |
setMethod("LearningSample", |
|
|
223 |
signature = "matrix", |
|
|
224 |
definition = LearningSample.matrix |
|
|
225 |
) |
|
|
226 |
|
|
|
227 |
LearningSample.ModelEnv <- function(object, ...) { |
|
|
228 |
|
|
|
229 |
inp <- initVariableFrame(object@get("input"), ...) |
|
|
230 |
|
|
|
231 |
response <- object@get("response") |
|
|
232 |
|
|
|
233 |
if (any(is.na(response))) |
|
|
234 |
stop("missing values in response variable not allowed") |
|
|
235 |
|
|
|
236 |
resp <- initVariableFrame(response, ..., response = TRUE) |
|
|
237 |
|
|
|
238 |
RET <- new("LearningSampleFormula", inputs = inp, responses = resp, |
|
|
239 |
weights = rep(1, inp@nobs), nobs = inp@nobs, |
|
|
240 |
ninputs = inp@ninputs, menv = object) |
|
|
241 |
return(RET) |
|
|
242 |
} |
|
|
243 |
|
|
|
244 |
setMethod("LearningSample", |
|
|
245 |
signature = "ModelEnv", |
|
|
246 |
definition = LearningSample.ModelEnv |
|
|
247 |
) |
|
|
248 |
|
|
|
249 |
newinputs <- function(object, newdata = NULL) { |
|
|
250 |
|
|
|
251 |
if (is.null(newdata)) return(object@inputs) |
|
|
252 |
if (inherits(object, "LearningSampleFormula")) |
|
|
253 |
newdata <- object@menv@get("input", data = newdata) |
|
|
254 |
|
|
|
255 |
if (inherits(newdata, "VariableFrame")) |
|
|
256 |
return(newdata) |
|
|
257 |
if (inherits(newdata, "LearningSample")) |
|
|
258 |
return(newdata@inputs) |
|
|
259 |
|
|
|
260 |
return(initVariableFrame(newdata, trafo = ptrafo)) |
|
|
261 |
} |